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MEMORIA

Introducción

Esta tesis se centra en la modelización numérica de flujos superficiales en aguas someras. Dichos

flujos se caracterizan por un comportamiento fuertemente bidimensional, que generalmente viene

impuesto por una separación entre las escalas horizontales y verticales que definen el problema.

Esta separación entre escalas permite realizar ciertas aproximaciones en las ecuaciones de Navier-

Stokes, para obtener así las ecuaciones de aguas someras bidimensionales. Existen numerosos

flujos en ingeniería hidráulica que pueden considerarse poco profundos, como por ejemplo el flujo

en ríos, canales o estuarios. La mayor parte de dichos flujos son turbulentos, siendo necesario para

su correcta modelización un adecuado tratamiento de la turbulencia. Al mismo tiempo, en nu-

merosas situaciones de interés práctico las fronteras que definen la extensión espacial del flujo son

una incógnita adicional del problema, que además puede variar con el tiempo. En dichos casos es

necesario realizar un adecuado tratamiento numérico del frente seco-mojado que permita obtener

soluciones estables y precisas. Algunos ejemplos en los que es necesario considerar el frente seco-

mojado son el flujo inducido por la marea en estuarios, el flujo en ríos con llanuras inundables, o

la modelización de oleaje de onda larga en zonas costeras.

El principal objetivo de esta tesis es aplicar las ecuaciones de aguas someras bidimensionales

a diferentes flujos en lámina libre, centrándose especialmente en aquellos problemas en los que o

bien el tratamiento de la turbulencia o bien el tratamiento del frente seco-mojado son de especial

relevancia. Para ello se ha desarrollado un código de volúmenes finitos que resuelve las ecuaciones

de aguas someras acopladas con diferentes modelos de turbulencia. El código incluye un modelo

parabólico de viscosidad turbulenta, un modelo algebraico de longitud de mezcla y 3 versiones

del modelo k − ε para aguas someras. Al mismo tiempo se ha propuesto e incluido un modelo de

tensiones algebraicas para aguas someras.

El código desarrollado se ha utilizado para simular el flujo en 4 aplicaciones prácticas difer-

entes que incluyen el oleaje de onda larga, el flujo inducido por la marea en un estuario, el flujo

en canal con un codo de 90o, y el flujo en escalas de peces de hendidura vertical. En todos los

casos los resultados numéricos se han comparado con datos experimentales, algunos de ellos pro-

porcionados por otros investigadores, otros obtenidos específicamente para este trabajo.

Metodología

El método de volúmenes finitos es probablemente el más comúnmente utilizado en Dinámica de

Fluidos Computacional (CFD), debido principalmente a sus propiedades de conservación y a su



intuitiva interpretación física, que lo hacen especialmente adecuado para resolver ecuaciones difer-

enciales de transporte. Por ello ha sido el método elegido en este trabajo para resolver tanto las

ecuaciones de aguas someras como las ecuaciones de transporte de los modelos de turbulencia.

Los esquemas de volúmenes finitos más adecuados para la resolución de las ecuaciones de aguas

someras han sido estudiados en profundidad por numerosos investigadores. Como discretización

del flujo convectivo, en este trabajo se han utilizado las extensiones de orden 2 de los esquemas

descentrados de van Leer y de Roe. Se ha utilizado asimismo una discretización descentrada del

término fuente pendiente del fondo, la cual proporciona esquemas más estables y precisos. El

tratamiento de los frentes seco-mojado utilizado es no-difusivo, numéricamente estable, y propor-

ciona un balance exacto de las ecuaciones del flujo en el caso hidrostático. Se han implementado 3

tipos de tratamiento para los contornos de tipo pared: condición de deslizamiento libre, funciones

de pared (wall functions) y condición de no-deslizamiento. El tipo de condición a aplicar depende

del tamaño de malla en la pared. En las aplicaciones prácticas presentadas en esta tesis únicamente

se han utilizado las funciones de pared y la condición de deslizamiento libre.

La verificación de los esquemas numéricos incluidos en el código se ha realizado para difer-

entes flujos sencillos que incluyen condiciones hidrostáticas con fondo irregular (discretización del

término fuente pendiente fondo), frente seco-mojado estacionario (condición seco-mojado), flujo

laminar en canal (término difusivo en las ecuaciones de aguas someras) y flujo turbulento en canal

(modelos de turbulencia).

En la primera de las aplicaciones prácticas las ecuaciones de aguas someras unidimensionales

se han utilizado para modelar la generación, propagación y reflexión de ondas largas generadas

por movimientos del fondo. Numéricamente, la generación de la ola se consigue mediante un

movimiento del fondo, excepto en el caso de generación mediante una pala vertical, en el que

se utiliza una condición de contorno móvil. Al mismo tiempo la condición seco-mojado partic-

ipa implícitamente en el proceso de generación. El muro rebasable se modela con la condición

seco-mojado, introduciendo una discontinuidad en el fondo. Las diferencias entre los resultados

numéricos y experimentales se deben principalmente a la existencia de aceleraciones verticales

cerca de las paredes con pendiente muy elevada. Estas aceleraciones invalidan la hipótesis de

presión hidrostática asumida en las ecuaciones de aguas someras.

La capacidad del código para modelar flujos en regiones costeras con extensas zonas inund-

ables se prueba en la segunda aplicación práctica, en la que se calcula el flujo inducido por la marea

en el estuario Crouch (Reino Unido). Las numerosas zonas inundables existentes en dicho estuario

se anegan y drenan con cada ciclo de marea. Una gran parte son llanuras de inundación con un

drenaje relativamente lento, mientras que en otras zonas la pendiente del terreno es considerable.

Los campos de velocidad y profundidad en el estuario son prácticamente insensibles al modelo de

turbulencia utilizado. Los resultados numéricos se comparan con datos experimentales de profun-

didad y velocidad obtenidos en varios puntos del estuario por el grupo CERU de la Universidad de



Londres (UCL).

El flujo en un canal con un codo de 90o se ha utilizado para comparar el comportamiento de los

modelos de turbulencia en zonas de recirculación. A pesar de la relativa simplicidad geométrica,

el flujo presenta zonas de recirculación secundarias cuyos efectos no son tenidos en cuenta en

el modelo bidimensional de aguas someras. A pesar de ello el modelo es capaz de ajustar los

resultados experimentales y de evaluar correctamente el tamaño de la zona de recirculación.

En la última aplicación práctica se estudia el flujo en dos diseños diferentes de escalas de peces

de hendidura vertical. El flujo en este tipo de estructuras hidráulicas es marcadamente bidimen-

sional excepto en la hendidura vertical. El nivel de turbulencia en el flujo es muy alto, y la correcta

modelización de esta es fundamental para obtener una buena predicción del campo de velocidades,

así como de la energía turbulenta. La turbulencia es fuertemente anisótropa, lo cual es tenido en

cuenta únicamente en el modelo ASM. Las simulaciones numéricas se han realizado con difer-

entes caudales, cubriendo el rango de aplicación práctica en este tipo de escalas. Las resultados y

el comportamiento de los diferentes modelos de turbulencia se ha analizado poniéndolo en relación

con las características del flujo.

Conclusiones y aportaciones más relevantes

Como resultado de este trabajo se ha desarrollado un código de volúmenes finitos para resolver las

ecuaciones de aguas someras bidimensionales acopladas a diferentes modelos de turbulencia en

régimen no estacionario, con especial atención a la modelización de la turbulencia y al tratamiento

de los frentes seco-mojado.

Se ha propuesto un modelo de tensiones algebraicas para aguas someras como una extensión

del modelo de tensiones algebraicas bidimensional, con términos adicionales que tienen en cuenta

la producción de tensiones turbulentas debido al rozamiento del fondo. En los casos estudiados en

esta tesis, el modelo de tensiones algebraicas proporciona resultados similares al modelo k − ε,

mejorando ligeramente la predicción de las tensiones de Reynolds.

La condición seco-mojado utilizada es numéricamente estable y ha proporcionado resultados

satisfactorios en la simulación de ondas largas generadas por movimientos del fondo, así como en

la simulación del flujo de marea en estuarios con topografía irregular. El hecho de que la condición

seco-mojado sea no-difusiva permite utilizarla para modelar muros verticales rebasables mediante

una discontinuidad en la altura del fondo. A pesar de ello, en dicho caso debe tenerse en cuenta

que las ecuaciones de aguas someras asumen una distribución de presión hidrostática, lo cual no es

correcto en el caso de existir fuertes aceleraciones verticales. Una posible futura línea de trabajo

es la inclusión de términos fuente que tengan en cuenta la distribución de presión no hidrostática

en las proximidades de muros con pendientes muy elevadas.



Se ha comprobado la importancia de utilizar esquemas descentrados de orden 2, especialmente

en flujos con gradientes de velocidad elevados. Un esquema de orden 1 produce soluciones excesi-

vamente difusivas, en las que la difusión numérica interfiere con la difusión turbulenta, dificultando

de esta manera la comparación de diferentes modelos de turbulencia. En este contexto se ha prop-

uesto un esquema híbrido, que simplemente utiliza una discretización de orden 2 para los caudales

unitarios, mientras que mantiene una discretización de orden 1 para el calado. El esquema híbrido

ha proporcionado resultados muy satisfactorios en las aplicaciones prácticas estudiadas.

Los resultados obtenidos en la escala de peces muestran que las ecuaciones de aguas someras

bidimensionales con un modelo adecuado de turbulencia proporcionan una buena representación

del flujo en escalas de hendidura vertical. Este resultado es especialmente interesante, ya que de-

bido a la naturaleza del flujo en la escala, podría parecer que solamente un modelo tridimensional

puede proporcionar resultados precisos. El modelo numérico reproduce con un nivel de precisión

satisfactorio las características más importantes del flujo (velocidad máxima, tamaño de las zonas

de recirculación, nivel de turbulencia, ...). En este caso el modelo de turbulencia utilizado tiene

una gran importancia en los resultados numéricos. Si bien los modelos ASM y k− ε proporcionan

campos de velocidad y profundidad ligeramente diferentes, la comparación con los datos experi-

mentales no permite afirmar cual de ellos es más preciso. Por otro lado, las tensiones turbulentas

proporcionadas por el modelo ASM ajustan mejor los resultados experimentales.

Como suele ocurrir en la dinámica de fluidos computacional, es difícil establecer cual es el

modelo más adecuado en términos generales. El modelo de tensiones algebraicas proporciona una

representación más precisa de las tensiones de Reynolds que el modelo k − ε, lo cual puede ser

interesante en problemas de transporte de contaminantes o de sedimentos. Ambos modelos propor-

cionan campos de velocidad similares, y a la vez más fiables y precisos que los proporcionados por

el modelo de longitud de mezcla. Sin embargo, en flujos en los que la turbulencia está generada por

las tensiones de fondo, los tres modelos proporcionan resultados parecidos. La principal ventaja

del modelo de longitud de mezcla es su robustez, simplicidad y su bajo coste computacional. Por

ello puede resultar más conveniente en determinadas situaciones en las cuales el campo de turbu-

lencia no influye excesivamente en el flujo medio. Por otro lado, en flujos fuertemente turbulentos,

como en la escala de peces, es necesario utilizar un modelo complejo para obtener resultados

fiables y precisos.
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Introduction

This thesis is a study on the numerical modelling of quasi-2D free surface turbulent flows. The

two-dimensional character of a free surface flow is usually enforced by a horizontal length scale

much larger than the vertical one, and by an homogeneous behaviour along the vertical coordinate.

Under these conditions certain approximations can be done in the governing equations of the fluid

in order to obtain the shallow water equations. Here, the term shallow refers to a small vertical

length scale compared to the horizontal length scale.

There are many free surface flows in environmental hydraulic and coastal engineering which

can be considered shallow water flows. The ability to accurately compute those flows is of great

importance in the placement of waste outfalls, in the evaluation of sediment transport, in the lo-

cation of fisheries and in the computation of water currents inside harbours, just to cite some

examples.

Almost every free surface flow is turbulent. Considering the usual length scales in engineering

practise, and the small kinematic viscosity of water, in most cases the Reynolds number is large

enough in order to consider the flow as fully turbulent. Even in the simplest river flow we can

observe small eddies that appear and disappear with an apparently chaotic movement, showing the

complexity of turbulent motion. In coastal regions, large eddies often occur due to the separation

of the flow past a headland, a breakwater or an island. These eddies are very important in envi-

ronmental engineering problems, and they have a great influence on solute and sediment trapping.

Figure 1(a) shows a Von Kármán’s vortex street formed in the clouds in the leeward flow from the

island of Guadalupe. A similar wake occurs in the water flow, being the sediment and pollutant

transport behind the island very dependent on these eddies. A sadly famous recent example of un-

stable wake in a marine environment is given by the photographs of the oil spilt from the Prestige

tanker (Figure 1(b)) which sank in the Galician coast in November 2002.

The interaction between tidal currents and the coastline can create strong and large turbulent

structures. Figure 2(a) shows a photograph of the tidal whirlpools generated in the Naruto-Strait,

in the Japan islands chain. As the tidal flow passes through the strait, which is about 1Km wide, a

high speed tidal turbulent jet is formed. Whirlpools of different sizes appear and interact between

each other producing complex turbulent patterns. Some of the eddies generated are even larger

than a cargo ship (Figure 2(b)), and do present a real problem for navigation along the strait.
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(a) von Kármán vortex street in the clouds wake be-
hind the island of Guadalupe (picture taken from the
webpage of the Atmospheric Sciences Data Centre.
http://eosweb.larc.nasa.gov).

(b) Oil wake behind the Prestige tanker in
the Galician coast (picture taken from the
webpage of the European Space Agency.
http://earth.esa.int/ew/oil slicks/).

Figure 1: Turbulent wakes in nature.

(a) Naruto strait. (b) Cargo ship inside the whirlpools.

Figure 2: Whirlpools generated in the Naruto-Strait by tidal currents (pictures taken from

http://133.31.110.195/D/inetpub/wwwroot/www/eddy.htm).

Turbulence is a state of fluid motion in which the flow seems to behave in a chaotic way, both in

space and time. It is difficult to give a precise definition of turbulence, but every turbulent flow has

a number of characteristics that distinguish it: (1) the flow seems chaotic and random; (2) small

oscillations upstream may lead to large perturbations downstream; (3) turbulence fluctuations are

always three-dimensional and unsteady; (4) in turbulent flow there are different length scales of

motion which differ by several orders of magnitude.

Fluid motion is governed by the Navier-Stokes equations, which are derived from Newton’s

laws of motion, and thus, they are deterministic. So why does turbulence seem chaotic and ran-

dom? A new insight into the problem was given by the development of the chaos theory, which

shows that even very simple non-linear equations can produce apparently random results. One

of the most famous and simplest equations which is able to produce a chaotic result is the model
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called logistic map, which is given by:

xn+1 = λxn(1 − xn) (1)

Depending on the value of its single parameter λ, this apparently simple equation can produce

a chaotic sequence of values xn. For λ = 2 the equation converges to xn = 0.5, while for λ = 4

there is not convergence at all, not even a periodic behaviour. Furthermore, a small change in

the initial conditions changes the results completely. The values of xn seem to have a random

behaviour, even though they are deterministic and given by the simple Equation 1.

If we think now about the Navier-Stokes equations, which are much more complex, we should

not be surprised to find apparently chaotic solutions. Even if they are deterministic laws, the high

non-linearity of the equations and their extreme sensitivity to the initial conditions produce random

results. In a similar way as the behaviour of Equation 1 depends on the parameter λ, the solution

to the Navier-Stokes equations depends on the geometry, on the boundary conditions and on the

Reynolds number. It is well known that for small Reynolds numbers the fluid flow is laminar,

while for large Reynolds numbers it is turbulent. It is also well known that the Reynolds number

limit where the flow changes from laminar to turbulent depends on the geometry and boundary

conditions of the problem (pipe, channel, boundary layer, ...).

It has been said by many authors that turbulence is probably the last unsolved problem in

classical physics. Certainly it is one of the most important problems in physics and engineering

nowadays, since it appears in almost all fluid flows. Many turbulence models have been developed

and used in practical calculations. Each day the understanding of turbulence increases, and more

sophisticated models appear. But we should not forget that they are still models, and so, turbulent

motions are not being resolved, but approximated by a model which was developed under some

simplifying hypotheses. Nowadays, with the increase in computers power, turbulence is starting

to be simulated rather than modelled, which means that the real equations which govern the fluid

motion, including turbulent motion, are being solved. But it is still not possible to perform these

kind of calculations in practical engineering flows. And, even considering that the computer’s

speed doubles every 18 months, it will not be possible for at least a hundred years. Thus, turbulence

modelling is, and will be necessary for many years.

Goals and Summary

The main goal of this thesis is to apply the depth averaged shallow water equations (2D-SWE) to

several free surface flows in which the turbulence modelling and the treatment of wet-dry fronts

are of special interest. In this context, four different flows have been studied: the generation,

propagation and reflection of shallow waves in a 1D flume (wet-dry fronts), the tidal flow in a

coastal estuary (wet-dry fronts and turbulence modelling), the flow in an open channel with a
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90o bend (turbulence modelling), and the flow in vertical slot fishways (turbulence modelling). The

treatment of wet-dry fronts is specially important in the modelling of long waves and tidal flow in

coastal regions. The turbulence modelling is much more important when computing the flow over a

90o bend and in vertical slot fishways. The numerical models based on the shallow water equations

include a number of assumptions concerning the flow conditions. As it is pointed out by Lloyd

and Stansby [84], due to these assumptions, and considering the numerical dissipation inherent to

the numerical schemes, the accuracy of the results is problem dependent and usually uncertain.

The aim of this work is to investigate, for the considered applications, which flow features can be

resolved by a depth averaged model and which features are beyond the capabilities of the 2D-SWE.

In order to do so, a finite volume solver for the 2D-SWE, coupled with several depth averaged

RANS (Reynolds Averaged Navier-Stokes) turbulence models, has been developed as a result of

this work. A depth averaged mixing length model and a k − ε model for shallow waters have been

included in the code, and a depth averaged algebraic stress model has been proposed. Additional

limiters to the production of turbulence proposed by Menter [88] and Durbin [45], which are

generally used in aerodynamic models but not in shallow water models, have been introduced in

the k − ε model. At the same time experimental data has been used to analyse the characteristics

of the flow as well as to compare with the numerical results. The experimental data permits us

to evaluate the degree to which the shallow water hypotheses are fulfilled in the considered flow.

Some of the experimental data has been obtained specifically for this thesis, and the rest has been

taken from other researchers.

In chapter 1 the general governing equations for 3D incompressible fluid flow are presented.

Several approaches for turbulence simulation are briefly described, with special emphasis on the

RANS turbulence modelling.

Chapter 2 summarises some previous theoretical, experimental and numerical studies about

turbulent shallow water flows. Since shallow water flows have a strong two-dimensional character,

some basic notions about 2D turbulence are included. It has been considered appropriate to derive

the shallow water equations starting from the 3D incompressible Navier-Stokes equations. This

derivation has not only an academical interest, but it also serves to show all the approximations

that are made in the derivation process. This is very helpful in order to understand the limitations

of the resulting equations, and to be able to asses the numerical results. Chapter 2 is also dedicated

to turbulence modelling in shallow waters. The models which have been implemented in the nu-

merical solver are presented and discussed. In order to account for anisotropic turbulence without

a significant decrease in the numerical stability, a depth averaged algebraic stress model has been

proposed as an extension of the 2D algebraic stress model, with additional terms which account

for the production of turbulence due to bed friction.

After a brief introduction to the finite volume method, the numerical solver is presented in

chapter 3. The numerical schemes and discretisation techniques used in the solver are described
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in detail. The solver includes the first and second order upwind schemes of van Leer and Roe,

an upwind discretisation of the source terms with second order corrections for the bed slope term,

and a special treatment of the wet-dry fronts. An hybrid first/second order discretisation of the

convective flux free of spurious oscillations is proposed and included in the solver. The k − ε

equations are solved with either an hybrid or a second order scheme. The validation of the solver

is done in chapter 4 for some simple flow conditions which include hydrostatic flow, steady wet-dry

fronts, laminar channel flow and turbulent channel flow.

In chapter 5 the 1D-SWE are used to model the generation, propagation and reflection of long

shallow waves in a 1D flume. This test case is specially suitable to validate the treatment of wet-

dry fronts in unsteady computations, and at the same time it allows us to check the solutions given

by the model in problems with a moving bed. The experimental results obtained in a 1D flume are

compared with the predictions given by the numerical solver.

In chapter 6 the numerical solver is used to compute the tidal flow in the Crouch estuary (Essex,

England). The estuary has extensive flat marsh areas which flood and dry periodically due to the

tidal driven flow. This makes it possible to test the treatment of the wet-dry fronts in complex

two-dimensional geometries with a very irregular bathimetry. The numerical results are compared

with experimental water depth and velocity data obtained at several points in the estuary by the

Coastal and Estuarine Research Unit (UCL, London).

In chapter 7 the free surface flow around a channel with a 90o bend is computed with several

turbulence models, and compared with experimental results obtained by Bonillo [13]. The aim is

to compare the flow in the recirculation region predicted by each turbulence model.

Finally, chapter 8 is dedicated to the computation of the flow field in two different designs of

vertical slot fishways. Statistical techniques are used to analyse the turbulent characteristics of the

flow field, using the experimental data obtained by Pena, who pointed out in recent works the need

of developing a numerical model of the flow in the fishway [105]. The results obtained with the

mixing length, the k − ε and the ASM models are discussed and compared with the experimental

data.
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The Equations
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Chapter 1

Numerical modelling of turbulent flows

1.1 Governing equations

1.1.1 The Navier-Stokes equations

The equations governing the behaviour of a fluid are the well known Navier-Stokes equations. For

an incompressible fluid, they form a system of 4 equations which account for the conservation of

mass and momentum:
∂uj

∂xj

= 0 (1.1)

∂ui

∂t
+

∂uiuj

∂xj

= −1

ρ

∂p

∂xi

+
1

ρ

∂τij

∂xj

+ Fi

where ui (i = 1, 2, 3) are the instantaneous velocity components, τij is the viscous stress tensor, p

is the pressure, and Fi are the volume forces. For a Newtonian fluid the viscous stress tensor can

be expressed as:

τij = μ

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)
= 2μ

(
sij − 1

3
δij

∂uk

∂xk

)
(1.2)

where sij is the strain-rate tensor and μ is the dynamic viscosity. For an incompressible fluid,

Equation 1.2 reduces to:

τij = 2μsij (1.3)

The Navier-Stokes equations are a highly non-linear system. The strong non-linearity of the

equations produces high frequency oscillations when the Reynolds number is increased, and the

flow becomes unstable and turbulent. It is computationally very expensive to solve the equations

directly, which makes that presently, only in very simple geometry configurations it is possible

to solve the Navier-Stokes equations using direct methods (DNS). The most common approach

at the moment in hydraulic engineering practise is to solve the Reynolds Averaged Navier-Stokes
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equations, in which the effect of turbulence is modelled rather than resolved.

1.1.2 The Reynolds Averaged Navier-Stokes equations (RANS)

The Reynolds Averaged Navier-Stokes equations are obtained after decomposing the instantaneous

variable values in a mean value (u) and a fluctuating value (u′) (Reynolds decomposition):

u = u + u′ (1.4)

where the overbar accounts for ensemble average. Introducing the Reynolds decomposition given

by expression 1.4 in the Navier-Stokes equations, averaging the equations (ensemble average),

and taking into account that the ensemble average of the fluctuation velocity is zero (u′ = 0), the

following system of equations is obtained for incompressible flow:

∂uj

∂xj

= 0 (1.5)

∂ui

∂t
+

∂ui uj

∂xj

= −1

ρ

∂p

∂xi

+
∂

∂xj

[
τij − u′

iu
′
j

]
τij = μ

(
∂ui

∂xj

+
∂uj

∂xi

)

The terms u′
iu

′
j , which appear due to the non-linearity of the convective flux, are known as

the Reynolds stresses or turbulent stresses. Only the 3 normal Reynolds stresses contribute to the

turbulent kinetic energy (k) of the flow, which is defined as:

k =
1

2

(
u′2 + v′2 + w′2

)
(1.6)

The Reynolds stresses are 6 new unknowns which need to be calculated. This is known as

the closure problem of turbulence, since there are more unknowns than equations, and thus, it is

necessary to close the problem with additional equations. The most common approach is to relate

the Reynolds stresses to the mean strain tensor by the Boussinesq assumption. A more accurate

approach, but computationally more expensive, is to solve 6 new transport equations, one for each

Reynolds stress (Reynolds Stress Turbulence Models).
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1.1.3 The non-dimensional Navier-Stokes equations

In order to obtain the non-dimensional Navier-Stokes equations, the following non-dimensional

variables are defined:

x̃i =
xi

Ls

ũi =
ui

Us

ρ̃ =
ρ

ρs

(1.7)

where Ls, Us and ρs are respectively, the characteristic length, velocity and density scales, which

are chosen in order to characterise the geometry, the velocity field and the density field of the

problem. Any variable is referred to them via relation 1.7. Other non-dimensional variables can

be obtained as a combination of the three basic characteristic variables. The non-dimensional

pressure, for example, is evaluated as:

p̃ =
p

ρsU2
s

(1.8)

and the non-dimensional time is computed as:

t̃ = t
Us

Ls

(1.9)

If the relations 1.7 are introduced in the Navier-Stokes equations, the non-dimensional equa-

tions are obtained as:
∂ũj

∂x̃j

= 0 (1.10)

∂ũi

∂t̃
+

∂ũiũj

∂x̃j

= −1

ρ̃

∂p̃

∂x̃i

+
1

Re

∂ũi

∂x̃j∂x̃j

+ F̃i

where the viscosity has been assumed to be constant, and the Reynolds number has been defined

as:

Re =
UsLs

ν
(1.11)

The resulting equations depend only on the Reynolds number, which is the ratio between the

convective and the viscous forces in the flow. This means that, for a given problem, i.e. given

geometry, initial and boundary conditions, the non-dimensional velocity field depends only on the

ratio
UsLs

ν
. In fact, it is the Reynolds number which gives the laminar or turbulent character of

the flow. For low Reynolds numbers the flow is laminar, while for large Reynolds numbers the

flow becomes turbulent. The transition from laminar to turbulent depends on the geometry and

boundary conditions of each particular problem (jet, wake, boundary layer, pipe, . . . ).

In the compressible Navier-Stokes equations another non-dimensional number appears, the

Mach number, which is a ratio between the velocity and the celerity at which pressure waves

propagate in the flow. For ideal incompressible flow the pressure waves celerity is infinity, and

thus, the Mach number is always zero, and it does not appear in the equations.
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1.2 Turbulence simulation in engineering flows

With the great development of computer capabilities in the last decades, the numerical computation

of fluid flows, generally known as Computational Fluid Dynamics (CFD), has become a common

practise in engineering. Since most of the practical engineering flows are high Reynolds flows,

the simulation of turbulence is of great importance in order to obtain accurate numerical results.

Several approaches exist which permit accounting for the turbulent effects in the flow.

The most straightforward approach is to solve the instantaneous Navier-Stokes equations. This

technique is known as Direct Numerical Simulation (DNS). The main problem of DNS is that it is

necessary to resolve all the frequency and spatial oscillations in the flow. In high Reynolds number

flows this is very expensive computationally, requiring extremely small spatial and time steps in

the computations. With the computer power available nowadays it is only possible to apply DNS

to very simple geometry configurations at very low Reynolds numbers.

A second approach consists in resolving the large scale fluctuations, while modelling the high

frequency motions. This kind of methods have been developed in the last 10 years by many re-

searchers, obtaining very good results in flows dominated by large fluctuations. In this group of

methods we can include the Large Eddy Simulation (LES), which resolves the large and medium

turbulent fluctuations and models the dissipative scales; the Very Large Eddy Simulation (VLES),

which resolves only the largest turbulent structures; and the Detached Eddy Simulation (DES),

which models all the turbulence near the walls and resolves the large scales in the rest of the flow.

These methods are computationally less expensive than DNS. DES starts to be used in engineering

computations, but they cannot be used yet in general engineering practise.

The most common approach at the moment in practical engineering problems is to solve the

Reynolds Averaged Navier-Stokes equations (RANS), in which all the effects of turbulence are

modelled. This is the less expensive approach, but all the accuracy obtained in the simulation

depends on the turbulence model used. Many RANS turbulence models exist, most of them semi-

empirical, some of them for specific flow conditions. But there is not a universal model with

universal constants. Usually all the models are calibrated for fully developed turbulence and trained

in a small range of simple shear flows. Hence, there is not any strong theoretical reason to think

that their performance can be generalised to complex flows. Some of the common handicaps

to RANS models are separated flows and transition flows. Nevertheless, the RANS approach is

commonly used in engineering practise, giving a good compromise between numerical accuracy

and computational cost.

1.2.1 Direct Numerical Simulation (DNS)

In DNS the instantaneous Navier-Stokes equations are solved. All the turbulence spectrum is

simulated, and therefore, no turbulence model is needed. Since turbulence is a three-dimensional
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unsteady phenomenon, it is always necessary to solve the 3D Navier-Stokes equations in time.

The main problem of DNS is that it is necessary to resolve all the scales of motion appearing

in the flow, since they interact between each other. In order to do that, the computational mesh

size must be smaller than the smallest significant scale of motion, and the time step must be small

enough to resolve the highest frequency oscillations appearing in the flow. The smallest significant

scale of motion (Kolmogorov’s microscale) is usually several orders of magnitude smaller than the

computational domain, specially for large Reynold numbers. Since DNS calculations are always

three-dimensional, the size of the numerical mesh increases very fast as the Reynolds number

increases. Rodi [117] estimates that for a plane channel flow at Re = 105, the number of grid

points should be of the order of 109. If the Reynolds number is increased to Re = 106, the number

of point increases to 1012.

This behaviour can also be illustrated by the estimation of the Kolmogorov microscale. Assum-

ing a fully developed turbulent flow with separation between the large and small turbulent scales,

the ratio between the Kolmogorov’s microscale and the large length scale can be approximated as:

ηk

ls
=

1

ls

(
ν3

ε

)1/4

≈
(

ν

usls

)3/4

(1.12)

where ηk is the Kolmogorov’s microscale, ls is the large length scale, us is the fluctuating velocity

scale, ν is the kinematic viscosity, and ε is the dissipation rate of turbulent energy. Considering

the viscosity of water (ν ≈ 10−6m2/s), a fluctuating velocity scale of us = 10−1m/s, and a

length scale of 10m, which are typical values in hydraulic engineering flows, the Kolmogorov

microscale obtained is
ηk

ls
≈ 3. 10−5. In order to obtain this resolution in a 3D mesh, around

1016 grid points would be required. These calculations can take several months even in the fastest

computers available at the moment. For this reason, at the present time and in the near future it

will not be possible to use DNS for practical engineering calculations.

However, DNS plays an important role in turbulence research. DNS is applied nowadays for

low Reynolds number calculations in simple geometries like boundary layers, channel flow, flow

around a cylinder, etc, providing very exhaustive and high quality data. These simple flows are the

base of more realistic conditions, and their analysis makes it possible to understand more complex

phenomena.

1.2.2 Large Eddy Simulation (LES)

The idea of LES is to simulate the large and medium scales of motion while modelling the small

scales, also called subgrid scales (SGS). This is a good approach in flows which are mainly driven

by large turbulent structures.

In LES, the Navier-Stokes equations are filtered (averaged over a volume). The resulting equa-
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tions depend on time and space. Thus, LES calculations, as happens with DNS, are always 3D

and unsteady. However, the mesh size in LES is much larger than in DNS (except in the near wall

region), which makes it computationally less expensive. The cut-off between the modelled scales

(SGS) and the resolved scales should ideally be placed somewhere in the Kolmogorov’s inertial

subrange of the spectrum. In this way only the dissipative scales are modelled, which are assumed

to be isotropic an homogeneous. This removes much responsibility from the turbulence model,

which permits to obtain good results with relatively simple turbulence models.

The main problem of LES is the simulation of the near wall region. Close to the walls the

size of the turbulent structures becomes very small. In order to have a well resolved LES it is

necessary to have a very fine mesh in the near wall region in order to be able to capture those

structures. This makes that in practise the near wall grid size should be almost as small as in

DNS. This requirement precludes the use of fully LES for industrial applications at the present

time. Spalart [126] estimates that until later than 2050 the computer’s power will not be enough to

apply fully LES and DNS techniques to aerodynamic industrial applications. A common solution

is to solve the RANS equations near the wall and the LES equations far away from the wall. This

approach is called Detached Eddy Simulation (DES), and it is presently more commonly used than

LES.

1.2.3 RANS models

The most commonly used approach in engineering practise nowadays is to solve the Reynolds Av-

eraged Navier-Stokes equations coupled with a turbulence model. Here, all the turbulent structures

occurring in the flow are modelled. The RANS turbulence models are usually derived for fully tur-

bulent flow, and their constants are obtained from experimental data on boundary layers or other

simple shear flows. While the turbulence models used in LES are only responsible for modelling

the subgrid scales, in RANS they are responsible for modelling the whole turbulence spectrum.

Several kinds of RANS turbulence models exist. The most used in practise are the linear eddy

viscosity models, in which the Boussinesq assumption is used to compute the Reynolds stresses

from the mean velocity gradients via a linear relation. There are also non-linear eddy viscosity

models, in which the Reynolds stresses and the mean velocity gradients are linked by a non-linear

relation. None of the eddy viscosity models can be considered clearly superior to the other ones.

The most popular RANS model is the k − ε model of Jones and Launder [67] (with all its low-

Reynolds versions), which was proposed in the early seventies, and it is still widely used in all

fluid dynamics areas, including aerodynamic, hydraulic and environmental flows. Other popular

models are the SST, the k − ω and the Spalart-Allmaras models [127], which are mainly used

in aerodynamic flows. New versions of the models are still appearing, and much work is still

being done in order to improve the existing models introducing correction terms which account for
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specific flow conditions (near wall terms, curvature and rotation corrections, anisotropy effects,

. . . ). The fact of the original k − ε model being one of the most commonly used two-equation

models, shows that there has not yet appeared any clearly superior model. A possible reason for

the similar results given by the different models under some flow conditions was pointed out by

Hunt [63], who considers that the influence of the turbulence model may be smeared in regions

where the time scale of the mean flow distortions is smaller than the characteristic turbulent time

scale.

In the Reynolds Stress Turbulence Models (RSTM), instead of using the Boussinesq assump-

tion, a transport equation is solved for each Reynolds stress. The fact of solving one equation for

each Reynolds stress permits accounting for curvature effects and anisotropy. In the Algebraic

Stress Models (ASM) the Reynolds stresses are approximated with non-linear algebraic expres-

sions. The ASM can be thought of either as a simplification of the RSTM or as an extension

of Boussinesq eddy viscosity models. Nevertheless, the fact that the equations for the Reynolds

stresses still contain modelled terms, and the higher complexity of RSTM compared with eddy

viscosity models, make the latter be more commonly used in engineering practise.

1.2.4 Unsteady RANS (URANS)

The purpose of unsteady RANS (URANS) is to simulate the largest eddies present in the flow and

their non-linear interaction. Therefore, URANS solutions are unsteady in time even with steady

boundary conditions. Durbin [44] found that the Reynolds stresses created behind a bluff body by

time averaging of URANS are larger than those given by the turbulence model, removing in such

a way much responsibility from the model.

In principle, URANS is an intermediate approach between steady RANS and LES. The main

difference between URANS and LES is that in LES the eddy viscosity of the subgrid model de-

pends explicitly on the grid size, while URANS is mesh independent by definition. Nonetheless,

there are many facts about URANS simulations that are still not clear, which makes LES/DES a

more common approach at the present time. A 3D-URANS computation is able to produce 3D

solutions over 2D geometries, like LES, but they appear to be much more dependent on the span-

wise size of the domain, which is chosen arbitrarily in the computations [126]. In addition, the

accuracy of the results depends on the kind of flow, and the solutions have been found to be quite

sensitive to the turbulence model [135]. Although URANS solutions should be mesh independent

by definition, there are some recently formulations [91, 135] which reduce the value of the eddy

viscosity in some regions of the flow in order to be able to resolve smaller turbulent structures,

obtaining in such a way an LES-like behaviour. These facts show that there is not yet a complete

understanding of the results given by URANS simulations [135].
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1.3 Turbulence models for the RANS equations

This section presents some of the most commonly used turbulence models for general 3D-RANS

computations. These models, as presented here, are not valid to be used with the depth averaged

shallow water equations. Nevertheless, it has been considered useful to present the original models

in order to account for their main features and limitations. The depth averaged versions of the

models are presented and discussed in chapter 2.

As it has been said, in the RANS equations the effect of turbulence is included in the mean

momentum equations via the Reynolds stresses. There are a great number of turbulence models

which are based on the Boussinesq assumption. These models are known as eddy viscosity models.

Other models do not rely directly on the Boussinesq approximation, as for example the Reynolds

Stress Turbulence Models, the Algebraic Stress Models or the non-linear eddy viscosity models,

although all of them use at some point the concept of eddy viscosity.

1.3.1 Linear eddy viscosity models

The Boussinesq assumption

The Boussinesq assumption is the base of all the eddy viscosity models. It relates the Reynolds

stresses with the mean velocity gradients via the eddy viscosity as:

u′
iu

′
j = −2νt

(
sij − 1

3
skkδij

)
+

2

3
kδij (1.13)

where u′
i (i = 1, 3) is the fluctuating velocity, νt is the eddy viscosity, sij is the mean strain-

rate tensor, and k is the turbulent kinetic energy defined as k =
u′

ku
′
k

2
. The evaluation of the

eddy viscosity, which is assumed to be isotropic, is left to the turbulence model. For a long time

simple turbulence models based on algebraic formulations have been used due to their simplicity

and robustness. More sophisticated models exist, which solve one or more transport equations for

different turbulent quantities, as the turbulent kinetic energy or the dissipation rate.

Algebraic turbulence models

Algebraic models, also called mixing length models, are the simplest models. An algebraic ex-

pression is used in order to evaluate the eddy viscosity at each point. They do not account for the

production, transport and dissipation of turbulence. Turbulence is assumed to be in local equilib-

rium. Due to their simplicity they are very easy to implement, but the results obtained should not

be expected to be highly accurate. Nevertheless, they can still give results comparable to those of

more sophisticated models in some simple flows.
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From dimensional analysis, the eddy viscosity is computed as the product of a turbulent length

scale ls, and a turbulent velocity scale vs, as:

νt ∼ lsvs (1.14)

Some well known mixing length models are the Cebeci-Smith model [22] and the Baldwin-

Lomax model [6], which were frequently used in boundary layer codes to compute the flow around

airfoils and in turbo machinery. Shirazi and Truman [122] have extensively studied the Baldwin-

Lomax model, founding that it produces very poor results when used in separated flows or in flows

with a complicated geometry. An extension of the Cebeci-Smith model for non-boundary layer

flows can be expressed as:

νt = l2s |s| = l2s
√

2sij sij (1.15)

For simple boundary layer flows the expression of the eddy viscosity reduces to:

νt = l2s

∣∣∣∣∂u

∂y

∣∣∣∣ (1.16)

where y is the normal direction to the wall, and u is the tangential velocity to the wall. The

main problem of the mixing length models is the evaluation of the length scale, which is usually

done under empirical basis for each specific flow. Some often used length scales are given by

Wilcox [148]:

ls = 0.090l plane jet

ls = 0.075l circular jet

ls = 0.090l mixing layer

where l is the half width of the flow structure (the radius in the circular jet).

One-equation models

In order to be able to account for the physical processes occurring in turbulent flows, i.e. produc-

tion, transport and destruction of turbulence, models which solve a transport equation for a given

turbulent quantity were proposed. The most representative quantity is the turbulent kinetic energy,

but there are also models which solve directly a transport equation for the eddy viscosity, like the

Spalart-Allmaras model [127].

From the turbulent kinetic energy equation, the velocity scale is computed as vs ∼ √
k, where

k is the turbulent kinetic energy. The length scale still needs to be determined empirically de-

pending on the nature of the flow, i.e. wake, jet or boundary layer. The modelled k equation for
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incompressible flow reads:

∂k

∂t
+

∂kuj

∂xj

=
∂

∂xj

[
(ν +

νt

σk

)
∂k

∂xj

]
︸ ︷︷ ︸

Diffusion

+ 2νtsij sij︸ ︷︷ ︸
Production

− k3/2

ls︸︷︷︸
Dissipation

(1.17)

where σk is a model constant with a usual value of 1, and ls is the length scale, which should be

determined empirically. Usually an algebraic expression is used to evaluate the length scale [16].

The k-equation model is not very often used in practise, except in the near-wall region, where the

length scale is easier to determine. On the other hand, the Spalart-Allmaras model for the eddy

viscosity is often used in aerospace applications with good results.

Two-equation models

As an extension of the one-equation models, the two-equation models compute both the length

and the velocity scales from transport equations. Usually the velocity scale is determined from

the modelled k equation, while different equations have been proposed for evaluating the length

scale. Some of the most frequently used two-equation models are the k − ε model of Jones and

Launder [67], the Wilcox k−ω model [147, 148], and the Smith’s k− l model [124, 125]. Each of

them is more suitable for different flow conditions. There have been some attempts to combine the

best features of each model, as the SST model of Menter [89], which combines the best features

of the k − ω model in the near wall region and the k − ε model in the outer region.

The k − ε model was originally proposed by Jones and Launder [67] in 1972. The length scale

in Equation 1.14 is computed from the turbulent kinetic energy k and the dissipation rate ε as:

ls =
k3/2

ε
(1.18)

Introducing the length scale given by Equation 1.18 into Equation 1.14, and computing the

velocity scale as vs ∼
√

k, the turbulent viscosity is evaluated as:

νt = cμ
k2

ε
(1.19)

where cμ = 0.09 is an empirical constant. The modelled k and ε transport equations read:

Dk

Dt
=

∂

∂xj

[
(ν +

νt

σk

)
∂k

∂xj

]
︸ ︷︷ ︸

Diffusion

+ 2νtsij sij︸ ︷︷ ︸
Production

− ε︸︷︷︸
Dissipation

(1.20)

Dε

Dt
=

∂

∂xj

[
(ν +

νt

σε

)
∂ε

∂xj

]
︸ ︷︷ ︸

Diffusion

+ c1ε
ε

k
2sij sij︸ ︷︷ ︸

Production

− c2ε
ε2

k︸ ︷︷ ︸
Dissipation
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cμ = 0.09 c1ε = 1.44 c2ε = 1.92 σk = 1.0 σε = 1.31

The five constants of the model are obtained from experimental results. Three of them, cμ,

c1ε and c2ε, have been obtained from experimental data on turbulent boundary layer flow and

homogeneous decaying turbulence behind a grid. The other two constants, σk and σε, have been

optimised by applying the model to various fundamental flows, such as flow in channel, pipes, jets,

wakes, etc.

The k − ε model as formulated in Equation 1.20 cannot be applied through the viscous layer

down to the wall, since it would lead to erroneous results, because the model was developed for

fully turbulent flow. If all the boundary layer wants to be resolved, it is necessary to use the

low-Reynolds version of the model, in which a damping function is used in order to diminish the

turbulence level near the wall. Many low-Reynolds versions of the k − ε model exist, which will

not be treated here. Some of them were proposed by Launder and Sharma [78] and Chien [27],

but many more exist in the literature. Patel et al. [103] give a review of low-Reynolds turbulence

models.

Limitations of the eddy viscosity models

The eddy viscosity models have some limitations which should be considered when analysing the

results given by them, specially in impinging regions, in swirling flows, or when buoyancy effects

are important.

In general, the performance of eddy viscosity models decreases when the turbulence is highly

non-isotropic. This is due to the fact that the Boussinesq assumption assumes an isotropic eddy

viscosity. Nevertheless, this kind of models can still give rather good predictions of the mean

flow variables in non-isotropic flows. On the other hand, they usually give poor predictions of

the turbulence field. The main flow conditions that the eddy viscosity models cannot account

accurately for are: (1) strong curvature; (2) impingement regions; (3) separation; (4) buoyancy

forces; (5) strong adverse pressure gradients. Despite these limitations, eddy viscosity models

are widely used in engineering calculations due to their robustness and simplicity compared to

other more sophisticated models. They have a good balance between accuracy, robustness and

complexity. When more accuracy is required it is necessary to use a non-linear eddy viscosity

model or a Reynolds Stress Model.
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1.3.2 Reynolds Stress Turbulence Models (RSTM)

In the RSTM a transport equation is solved for each Reynolds stress. This means that, in 3D flow,

six new transport equations must be solved. The modelled equations for the turbulent stresses read:

Du′
iu

′
j

Dt
= Φij +

∂

∂xk

[
(ν + Cku′

ku
′
m

k

ε
)
∂u′

iu
′
j

∂xm

]
︸ ︷︷ ︸

Diffusion

−u′
iu

′
k

∂uj

∂xk

− u′
ju

′
k

∂ui

∂xk︸ ︷︷ ︸
Production

− 2

3
εδij︸ ︷︷ ︸

Dissipation

(1.21)

The term Φij accounts for the modelling of the pressure strain term, which is responsible of

redistributing the turbulent kinetic energy among the normal Reynolds stresses. It transports the

energy from the most energetic stresses to the less energetic ones. Its trace is zero, and thus, it does

not create neither destroy turbulence, it just redistributes it. For modelling purposes, the pressure

strain term is divided into a slow part and a rapid part. The effect of the wall is introduced by a

slow and a rapid wall terms. In this way, Φij is split as:

Φij = Φij,R + Φij,S + Φw
ij,R + Φw

ij,S (1.22)

where the subindex R refers to the rapid part, the subindex S to the slow part, and the superindex w

to the wall-correction terms. The expressions for the slow and the rapid part are:

Φij,S = −c1
ε

k

(
u′

iu
′
j −

2

3
kδij

)
(1.23)

Φij,R = −c2

(
Pij − 2

3
Pkδij

)

c1 = 1.8 c2 = 0.6

A modelled expression for the wall-correction terms can be found in [77]. The diffusion term

in Equation 1.21 accounts for the viscous and turbulent diffusion. Davidson [33] proposes an

alternative expression to model this term, which is more stable and produces similar results:

Dij =
∂

∂xk

[
(ν +

νt

σk

)
∂u′

iu
′
j

∂xk

]
(1.24)

One of the most important differences between RSTM and eddy viscosity models is that in

the former ones the production term does not need to be modelled, since the Reynolds stresses

are directly computed. Hence, its value is much more accurate than in the eddy viscosity models,
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where the Boussinesq assumption is used to model the production of turbulent kinetic energy.

Equation 1.21 assumes an isotropic dissipation. This is a reasonable hypothesis since the small

turbulent scales, where dissipation occurs, can be assumed to be isotropic for large Reynolds num-

bers.

1.3.3 Algebraic Stress Models (ASM)

In order to avoid solving six new differential equations, the ASM use algebraic expressions to

model the Reynolds stresses. They can be considered either as a simplification of the RSTM or as

an extension of the k − ε model.

The transport equations which model the Reynolds stresses (Equation 1.21) and the turbulent

kinetic energy (Equation 1.20) can be written in symbolic form as:

Cij = Dij + Pij + Φij − εij (1.25)

Ck = Dk + Pk − ε

where the subindex ij accounts for the Reynolds stress u′
iu

′
j , Cij represents the convection terms,

Dij the diffusion terms, Pij the production terms, and Φij the pressure strain terms. The basic

approximation in ASM is that the convection and diffusion terms in the Reynolds stress equa-

tions are proportional to those in the turbulent kinetic energy equation, which can be expressed

mathematically as:

Cij − Dij =
u′

iu
′
j

k
(Ck − Dk) (1.26)

Combining Equations 1.25 and 1.26 gives:

Pij + Φij − εij =
u′

iu
′
j

k
(Pk − ε) (1.27)

Introducing into Equation 1.27 the modelled expressions for the production and pressure strain

terms, and considering an isotropic dissipation (εij =
2

3
ε), yields:

u′
iu

′
j =

2

3
kδij +

k

ε

(1 − c2)(Pij − 2
3
Pkδij) + Φw

ij,R + Φw
ij,S

c1 +
Pk

ε
− 1

(1.28)

Equation 1.28 is highly non-linear and implicit in the Reynolds stresses, which appear both

in the left and in the right hand side of the equation. The production terms Pk and Pij , as well

as the wall-correction pressure strain terms, Φw
ij,R and Φw

ij,R, depend on u′
iu

′
j . This strong non-

linear relation between the different Reynolds stresses promotes the instability of the model, being
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the numerical convergence usually more difficult than in RSTM. Some explicit expressions have

been derived for the ASM for 2D [109] and 3D flow [52]. The expressions for the Reynolds

stresses in the explicit ASM are more complex, specially in 3D flow, but the numerical stability is

improved [34].

1.4 Wall boundary condition

The interaction between the fluid and the boundary walls is of great importance in turbulent flows.

Due to the strong velocity gradients occurring near the walls, a large amount of turbulence is

generated. This turbulence plays a very important role in physical phenomena as heat exchange

and reattachment of separated regions.

The structure of the flow near the wall is called boundary layer. It is divided in an outer region,

where the convective and turbulent stresses are much more important than the viscous effects, and

an inner region, where the convection terms in the Navier-Stokes equations can be neglected. At

the same time, the inner region is divided in a viscous linear layer and a mesolayer, linked by a

transition buffer layer [54].

The viscous sublayer is dominated by viscous diffusion. It extends from the wall up to a dis-

tance of around 5 wall units (y+ ≈ 5, as defined in Equation 1.29). The fluctuating velocity is

damped by the wall and by the viscous forces, and the turbulence level is low. In the viscous

sublayer occur the strongest velocity gradients in the flow. In the buffer layer the viscous forces

diminish and the turbulent forces increase as the distance from the wall increases. It is a transition

layer linking the viscous layer and the mesolayer. The mesolayer, starts around y+ ≈ 30, and it

extends up to y+ ≈ 100 − 200. The main force in the Navier-Stokes equations is the turbulent

shear stress. The velocity profile is almost logarithmic and the velocity gradients are much lower

than they are in the viscous layer. The total shear stress (viscous plus turbulent stresses) is approx-

imately constant from the wall up to the outer part of the logarithmic layer. It can be expressed

as τw = ρu2
∗, where u∗ is the wall friction velocity. The limits between the viscous layer, the

mesolayer and the outer layer depend on the Reynolds number and on the flow configuration.

Due to this rather complicated structure of the flow near the walls, the numerical modelling of

the wall region is not straightforward. Different boundary conditions must be used depending on

the size of the numerical mesh near the wall. The strong gradients occurring near the wall oblige to

use a very fine mesh if we want to resolve all the boundary layer down to the wall. An alternative

approach is the use of wall functions, which allow to have a coarser mesh near the wall. In some

cases in hydraulic engineering, due to the large size of the spatial domain, the mesh near the walls

is very coarse. In these situations a slip condition is often used.

The boundary condition to be used depends on the distance from the first computational inner
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node to the wall, expressed in wall units (y+):

y+ =
yu∗
ν

(1.29)

where the superindex + refers to wall units, u∗ is the wall friction velocity and ν is the cinematic

viscosity.

1.4.1 No-slip condition

The no-slip condition at the wall is given by:

uw = vw = ww = 0 kw = 0 εw = ν
∂2k

∂y2
(1.30)

where the subindex w refers to wall values, and y is the normal direction to the wall. As it has been

said, this boundary condition needs a very fine mesh near the walls. The first inner node of the

numerical mesh must be located at a distance of approximately 1 wall units (y+ ≈ 1) or smaller.

Which is a strong limitation in the mesh size.

If the no-slip condition is applied, a low Reynolds turbulence model should be used. This is

because the original models were developed for fully turbulent flow conditions, which do not apply

close to the wall.

1.4.2 Wall functions

An alternative approach to the no-slip condition are the wall functions. In this case the first inner

node should be located in the logarithmic boundary layer, which typically extends from y+ ≈ 30

up to y+ ≈ 100. The velocity field near the wall is not resolved, and therefore, the wall shear stress

cannot be computed from the velocity gradient at the wall. Instead it is computed from the wall

friction velocity as τw = ρu2
∗. From the velocity field, the wall friction velocity u∗ is computed

from the logarithmic law of the wall as:

ut =
u∗
κ

ln

(
yu∗E

ν

)
(1.31)

where ut is the velocity component parallel to the wall, y is the normal distance to the wall, u∗ is

the friction velocity, κ is the von Kármán’s constant (κ = 0.41), and E is the roughness parameter.

For smooth walls E = 9.0. In environmental hydraulic problems, like river flow, the bed surface

is not smooth, and the value of E should be modified. For rough surfaces the roughness parameter
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depends on the non-dimensional roughness, which is defined as:

K+
s =

Ksu∗
ν

(1.32)

where Ks is the roughness height. The dependence of the roughness parameter on the non-

dimensional roughness is given by [43]:

E =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

9.0 if K+
s ≤ 5

1

0.11 + 0.033K+
s

if 5 < K+
s < 70

30

K+
s

if K+
s ≥ 70

(1.33)

Other formulations for evaluating the roughness parameter exist (see for example [153]). For

smooth walls Ks = 0. For rough sand beds Ks is taken usually as the median diameter of the bed

material (Ks = d50). Other expressions for Ks are given by van Rijn [142].

Equation 1.31 must be solved iteratively at each first inner node of the numerical mesh. The

wall shear stress τw, the turbulent kinetic energy k, and the dissipation rate ε at the first inner node

are computed from the logarithmic law as:

τw = ρu2
∗ k = c−0.25

μ u2
∗ ε =

u3
∗

κy

u′2 = 3.63u2
∗ u′v′ = −u2

∗ v′2 = 0.825u2
∗

(1.34)

where u′2 and v′2 are, respectively, the Reynolds stresses tangential and perpendicular to the wall,

and cμ = 0.09 is the same constant as in Equation 1.19. With this formulation, the k and ε

equations are not solved at the first inner node, but their value is imposed from Equation 1.34, as

well as the values of the Reynolds stresses if a RSTM or ASM is used.

1.4.3 Slip condition

In some situations in which the spatial domain is very large (rivers, estuaries, coastal domains, . . . )

the first inner node of the numerical mesh is located far away from the wall, lying outside of the

logarithmic layer. In these situations it is generally used a slip condition. The normal velocity at

the wall is set to zero, and the tangential velocity is left free. Concerning the turbulent variables,

the diffusion is neglected at the wall, and the value of k and ε is left free:

un = 0 Dk = 0 Dε = 0 (1.35)
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where un is the velocity component normal to the wall, Dk is the diffusion of turbulent energy, and

Dε is the diffusion of ε.

This approach is less accurate than the wall functions formulation, special near the solid walls.

On the other hand, the computational cost is smaller and it can be a relatively good approach when

the walls do not play an important role in the flow patterns. Quite often in shallow water flows

the turbulence is mainly generated by the bed friction or by velocity gradients inside the flow, and

thus, the flow far away from the walls is barely influenced by the wall friction.

An attempt to improve the results near the wall when the slip condition is applied, is to over-

estimate the bed friction in the nodes adjacent to the walls, in order to account partially for the

wall friction effect. If the Manning’s formula is used to estimate the bed friction, the Manning’s

coefficient can be overestimated as [13]:

nc = ni

(
1 +

h

B

)1/6

(1.36)

where nc is the Manning’s coefficient in the wall boundary nodes, ni is the Manning’s coefficient

in the inner nodes, h is the water depth, and B is a measure of the cell width.

1.4.4 Mesh independent wall functions

A typical problem when dealing with large and complex spatial domains is the difficulty to adjust

the wall mesh size to the values required by the wall function formulation, mainly for two reasons:

first, because it is difficult to make a previous estimation of the wall friction velocity at each point;

and second, because the friction velocity may vary a lot from one point to another, and thus, it is

difficult to place the first inner node always in the range of the logarithmic law.

An efficient way to solve this problem is to use scalable wall functions. Menter [90] proposed

a formulation independent of the mesh size near the wall which permits using wall functions even

if the first node is located between the viscous and the logarithmic layer. In this formulation the

friction velocity is computed as:

ut =
u∗
κ

ln
(
y+E

)
(1.37)

y+ = max
(
11.067,

yu∗
ν

)
The lower limit for y+ gives a linear relation between ut and u∗ when the first node is very

close to the wall (y+
1 < 11.067). When y+

1 > 11.067, the usual logarithmic law applies. Menter

obtained good results, almost independent of the wall mesh size, with this approach [90]. Menter’s

formulation is valid in meshes where the grid size is always smaller than the upper limit of the

logarithmic law (y+ ≈ 100).
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Chapter 2

Shallow water turbulent flows

2.1 Quasi-2D turbulent flows

Several kind of flows are often studied and modelled as shallow water flows. A few examples are

coastal and estuarine tidal flow, tsunami propagation and dam break problems, among others. This

section presents a brief review of previous experimental and theoretical studies on shallow water

flows and 2D turbulence.

The study of shallow water flows is strongly linked with 2D flow and turbulence. Shallow water

flows are those in which the vertical characteristic length is much smaller than the horizontal one.

The water depth limits the development of the large 3D turbulent structures. At the same time, the

production of vorticity due to stretching of vortex lines in the vertical direction is also limited by

the water depth, and the 2D state is approached as the water depth diminishes. However, this is

not always the case in real flow conditions. The possibility of distinguishing between 2D and 3D

turbulent structures depends on the ratio between the horizontal and the vertical turbulent length

scales. Nevertheless, no matter how small the water depth is, there is always some interactions

between the quasi-2D and the 3D structures.

The possibility of assuming quasi-2D turbulence, at least on the large scales, is of great ap-

pealing, since it reduces the degrees of freedom of the problem. The main differences between 2D

and 3D turbulence lay in the fact that in two dimensions there is no production of turbulence due

to vortex stretching, and therefore, the vorticity of a fluid element is conserved in the inviscid case

limit. Some of the first researchers studying 2D turbulence were Kraichnan and Batchelor in the

final sixties. Kraichnan [75] studied the behaviour of the energy spectrum in the inertial subrange

in quasi-steady forced 2D turbulence, while Batchelor [7] studied the energy spectrum in homo-

geneous decaying 2D turbulence. They obtained scalings of the 2D energy spectra different from,

but compatible with, Kolmogorov’s −5/3 power law for the inertial subrange. It was proposed by

Kraichnan [75], and it is generally accepted, that if energy is injected in the flow at a characteristic

length scale li, there exists an inverse energy cascade from the small to the large scales for wave
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numbers smaller than ki <
2π

li
, with the energy spectra scaling as E(k) ∼ ε2/3k−5/3, where ε is

the energy transfer rate. At the same time, and for wave numbers larger than ki >
2π

li
, there is an

enstrophy transfer to the small scales (the enstrophy is defined as the fluctuating vorticity energy

w′
iw

′
i

2
, where wi is the vorticity). In this range the spectrum scales as E(k) ∼ η2/3k−3, being η

the enstrophy transfer rate. It has been argued by Benzi et al. [9] that the scaling of the spectrum

depends on the initial conditions, being the previous scenario a marginal case. One of the few

experiments in which the two inertial subranges proposed by Kraichnan have been observed has

been presented by Rutgers [119]. In any case, an important point derived from the theory is that

under certain flow conditions it may exist an inverse energy cascade from the small to the large

scales. This phenomenon can be often observed in shallow water wakes behind a body, where small

whirlpools join together in order to form a larger eddy. The spectral analysis of shallow water flows

often reveals the −3 power law proposed by Kraichnan [75] and Batchelor [7], as well as strong

energy peaks which show the existence of large 2D structures in the flow [141, 66, 138, 137].

There are several studies which reveal that the large horizontal quasi-2D coherent structures

play an important role in shallow water flows. Plane turbulent jets in shallow waters have been

extensively studied experimentally by Dracos et al. [42], Giger et al. [56], Thomas et al. [132] and

Chen et al. [26]. Shallow water wakes around circular cylinders and conical islands were studied

by Lloyd et al. [86, 84, 85] as well as by Chen and Jirka [24, 25]. The homogeneous decaying

turbulence produced by a grid in shallow flows was investigated by Uijttewaal and Jirka [137],

who found the merging of vortex which characterises the inverse energy transfer. There are several

studies by Uijttewaal et al. [138, 136] and by Chu et al. [28] about the shallowness and bed friction

effects in the development of 2D turbulent structures in free surface mixing layers. The turbulence

characteristics in open shallow channels were measured and analysed by Prooijen et al. [141] and

simulated numerically with a DNS approach by Pan et al. [100]. Different generation mechanisms

of large coherent structures in shallow jets, wakes and mixing layers were proposed by Jirka [66].

All these theoretical, experimental and numerical studies reveal the critical role which large 2D

turbulent structures play in shallow water flows, as well as the importance of the bottom and free

surface boundary conditions, which confine the flow and modify the turbulence properties. The

no-slip bottom condition enhances the 3D turbulence production, while the free slip condition at

the free surface promotes 2D turbulence [138]. The confinement of the flow by the bottom and

free surface prevents the generation of vorticity by the vortex stretching mechanism, which is an

important difference between quasi-2D shallow water flows and 3D flows over 2D geometries,

since the vortex stretching process is present in the latter.

The 2D properties are not always present in shallow water flows. The stability of the 2D

large structures depends on the balance between the effect of horizontal shear, which produces

2D structures, the effect of shallowness, which damps the 3D instabilities, and the effect of bed
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friction and vertical shear, which damp and stabilise the large 2D eddies [138, 29] and create 3D

turbulence. Wolanski et al. [151] studied the wakes formed behind islands and defined an island

wake parameter P as:

P =
UH2

νzD
(2.1)

where U is the free stream velocity, H is the water depth, D is the island characteristic diameter

and νz is the vertical eddy viscosity. According to their study, when the island wake parameter is

very small (P << 1) the flow is stable and no bubble appears in the wake, for P ≈ 1 a stable

turbulent wake is formed behind the island, and for P >> 1 the bed friction becomes negligible

and an unsteady wake appears. Further theoretical and experimental studies on the shallow water

flow around islands have been made by Chen and Jirka [24, 25]. In order to classify the shallow

wake behind a cylinder they used a wake stability parameter S defined by Ingram and Chu [64] as:

S = 2cf
D

H
(2.2)

where cf is the bed friction coefficient, defined as cf =
τb

U2
, where τb is the bed shear stress.

Chen and Jirka found that above a critical vertical Reynolds number of Rv =
UH

ν
> 1500, the

flow structures depend mainly on the wake stability parameter S, being quite insensitive to the

horizontal Reynolds number (Rh =
UD

ν
). For small values of the stability parameter (S < 0.2) a

von Kármán’s vortex street appears behind the body. This is the case of a small bed friction and a

large water depth. As the bed friction increases and the water depth diminishes, an unsteady bubble

appears in the wake for values of the wake stability parameter in the range 0.2 < S < 0.5. For

larger values of S the wake is stable and the bubble becomes steady. Similar results were obtained

by Lloyd et al. [84, 86] in flows around conical islands.

The results of Wolanski [151], Chen and Jirka [24, 25], and Lloyd [84, 86], show clearly

that unlike in unbounded flows, where the flow patterns are classified according to the Reynolds

number, in shallow waters the flow patterns depend strongly on the water depth and on the bed

friction. These parameters establish the differences between 2D unbounded flow and 2D shallow

water flow.

2.2 Numerical models in hydraulic engineering

The most general approach to model a free surface flow, although not the most often used, is

to compute the fully 3D flow with a specific treatment of the free surface boundary. The main

drawback to a fully 3D approach is its computational cost, specially in environmental problems,

where the size of the spatial domain is very large and there are flow patterns of very different length

scales involved in the flow. For this reason, it is not yet efficient to use the fully 3D approach in
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river engineering applications, as it is pointed out in recent works by Duan [43] and Minh-Duc

[92]. Still, the 3D approach can be used to compute the flow in hydraulic structures. Olsen [99, 98]

used a 3D Navier-Stokes model to compute the flow in a spillway, where the vertical velocity is

important and the extension of the spatial domain is small. Wu et al. [153] used the same approach

to compute the flow and sediment transport in open channels.

In shallow water flows it is possible to simplify the governing equations assuming an hydro-

static pressure distribution in the vertical direction. In such a case the vertical momentum equation

is simplified to the hydrostatic pressure equation, and therefore, only the two horizontal momen-

tum equations need to be solved in a 3D mesh. The continuity equation is used in order to compute

the free surface level. The numerical mesh is often built as a 2D horizontal mesh with several

layers in the vertical direction, being the number of layers dependent on the expected complexity

of the vertical velocity profile. This approach is called 3D shallow water computations, and it has

been used by Bijvelds et al. [12] to compute the turbulent flow in square harbours, by Lloyd and

Stansby [84, 85] to model the shallow flow around conical islands, and by Stansby and Lloyd [128]

to compute the wake around islands in oscillatory laminar shallow flow.

Further simplifications can be done in order to derive the depth averaged shallow water equa-

tions, also known as St. Venant equations or 2D shallow water equations, which are obtained after

vertical integration of the 3D shallow water equations. The depth averaged formulation, which

is the one adopted in this thesis, has been successfully applied to different problems, obtaining

rather accurate results with a relatively low computational cost when compared with the fully 3D

approach. It has also the advantage of being very robust for computing accurately the water depth,

even in unsteady problems with large free surface gradients, as it happens in the shocks appear-

ing in hydraulic jumps or in the dam break simulations. The treatment of unsteady wet-dry fronts,

which appear typically in coastal regions and in flooding problems, is also much simpler and stable

than in the 3D approach. The 2D depth averaged formulation has been extensively used to model

the dam break problem (Bellos et al. [8], Brufau and García-Navarro [18]), the propagation and

runup of shallow water waves (Cea et al. [20], Dodd [40], Hubbard and Dodd [61]), flooding and

drying problems (Brufau et al. [19], Bradford and Sanders [15], Playán et al. [108]), free surface

flow in hydraulic structures (Bonillo [13], Molls and Chaudry [93]), flow in rivers and estuaries

(Sleigh et al. [123], Wilson et al. [149], Winterwerp et al. [150], Yoon and Kong [155], Ding et

al. [39]), flow in coastal regions (Sauvaget et al. [120]), and sediment transport in open channels

and reservoirs (Wu [152], Olsen [97]). Some well known 2D shallow water models are the finite

difference model MIKE21, developed at the Danish Hydraulic Institute [38], the finite element

model TELEMAC2D [104], and the CCHE2D model [65]. Another simplification step can still be

given in order to obtain the 1D St. Venant equations, which can be applied to channels, hydraulic

structures or rivers, when the transversal effects are of little importance.

Due to the physical assumptions done in the shallow water models, the accuracy of the results is
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problem dependent. Lloyd and Stansby [84] used both the 2D-SWE and the 3D-SWE to compute

the shallow water flow around conical islands, and found that in some cases the 2D model gave

more accurate results than the 3D model. The authors attributed those results to the fact that in a

2D model the vertical mixing is instantaneous, while in a 3D model it depends on the turbulence

model used.

Regarding turbulence, simple models are often used in hydraulic and coastal engineering. The

extension of the spatial domain and the different scales involved preclude the use of fully 3D

LES and DNS techniques in practical problems at the present time. The 2D features which are

present in most shallow water flows have induced Uittenbogaard and van Vossen to simulate the

turbulent scales larger than the water depth, rather than modelling them [139]. This approach leads

to 2D-LES computations. This may seem contradictory with the idea of LES being always three

dimensional, but it is justified by using a filter size approximately equal to the water depth, and by

the fact that the horizontal large scales have 2D characteristics.

Two-equation RANS models, specially k − ε models, are usually the more advanced models

used with both the 3D as well the 2D shallow water equations. Uijttewaal and Tukker [138]

studied the development of quasi-2D structures in a shallow free-surface mixing layer, concluding

that the turbulence model used should account for both, the 3D turbulent structures created by bed

friction and the quasi-2D large structures originated by horizontal strain. A classical shallow water

turbulence model proposed by Rastogi and Rodi [116] is a depth averaged version of the famous

k − ε model of Jones and Launder [67], with additional source terms which account for the bed

generated turbulence. Booij [14] proposed the modification of some constants in the bed friction

production terms of the Rastogi and Rodi model. Babarutsi and Chu [3] proposed a two-length-

scale depth averaged version of the k − ε model which accounts in a different way for the 3D

bed generated turbulence. The same two-length-scale model, but with a slight modification on the

dissipation equation, was used by Babarutsi and Chu in [4]. All these models will be presented

and discussed later on in this chapter. A simplified 2D algebraic stress model was used by Ni [95]

in order to simulate the non-isotropic transport and dispersion when heated water or pollutant are

side-discharged into a large water body. The model of Ni does not account for the production of

turbulence due to bed friction, and it uses simplified expressions for the Reynolds stresses in order

to improve the stability of the numerical scheme.

2.3 The shallow water equations

Most environmental hydraulic flows are turbulent free surface flows which extend over relatively

large spatial domains like estuaries, rivers, basins, channels, etc. Some of the complications that

arise when doing a numerical simulation of these kind of flows are the complex geometry, the

size of the domain, the computation of the free surface, and the treatment of wet-dry fronts. The
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complex geometry makes very convenient the use of unstructured meshes. The size of the domain

and the different length scales involved, make it difficult and expensive to have a high spatial

resolution in boundary layers and shear layers. In order to cope with the uneven and unknown

free surface, the water depth is treated as a new unknown. If the 3D-version of the shallow water

equations is solved, the σ-coordinates introduced by Phillips [107] are often used in order to have

a constant number of cells in the vertical direction throughout the computation. Other different

numerical approaches exist to track the free surface moving boundary which will not be treated

here. In many problems, some regions of the spatial domain may become wet and dry depending

on the water depth. In those cases the wet-dry front must be computed by the numerical model.

In this section a complete derivation of the shallow water equations is done, starting from the

general Navier-Stokes equations for incompressible flow, following with the 3D shallow water

equations, and finally obtaining the depth averaged shallow water equations. The purpose of this

derivation is not only academic, but also to show and summarise all the hypotheses and simplifica-

tions that are made in the process, in order to know and understand the limitations of the resulting

equations, when they can be applied and what we can expect from the numerical results.

2.3.1 Notation

When deriving the shallow water equations starting from the Navier-Stokes equations several def-

initions of the flow variables appear (instantaneous, vertical average, fluctuation, vertical fluctu-

ation, ensemble average), which might lead to confusion if the notation is not clear. In order to

avoid misleading, a complete definition of the different variables is made below:

u(x, y, z, t) : instantaneous

u(x, y, z, t) : ensemble average of u

u′(x, y, z, t) : fluctuation of u respect to u

< u > (x, y, t) : vertical average of u

u′′(x, y, z, t) : fluctuation of u respect to < u > (x, y, t)

U =< u > (x, y, t) : vertical average of u

U ′(x, y, z, t) : fluctuation of u respect to U

It should be remarked that in a general case the ensemble average may be time dependent. In

steady flows the ensemble average is equivalent to the time average, and therefore, it is not time

dependent:

u = u(x, y, z) U = U(x, y) (2.3)

On the other hand, the instantaneous velocity u is always time dependent even in steady flows.

For the sake of simplicity in the notation, the vertical average of the ensemble average will be
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addressed as U :

U =
1

h

∫ zs

zb

u dz (2.4)

where h = zs − zb is the water depth, zb is the bed elevation, and zs is the free surface elevation.

With the previous definitions any variable can be decomposed into its average and fluctuating

values as:

u = u + u′ u =< u > +u′′ u = U + U ′ < u >= U+ < u′ > (2.5)

The forth equation in 2.5 is just the vertical average of the first one, while the third one is

just the ensemble average of the second one. Considering the previous definitions, the following

relations apply:

u′ = 0 < u′′ >= 0 (2.6)

2.3.2 Computation of the free surface

When computing free surface flows a new unknown appears: the location of the free surface bound-

ary, i.e. the water depth. This is usually computed by either the depth averaged mass continuity

equation or by the kinematic free surface condition. The depth averaged mass continuity equation

is obtained after vertical integration of the mass continuity equation as:∫ zs

zb

∂u

∂x
+

∂v

∂y
+

∂w

∂z
dz = 0 (2.7)

Applying Leibnitz’s rule yields:

∂

∂x

∫ zs

zb

u dz − ∂zs

∂x
us +

∂zb

∂x
ub +

∂

∂y

∫ zs

zb

v dz − ∂zs

∂y
vs +

∂zb

∂y
vb + ws − wb = 0 (2.8)

where the subindex s refers to free surface variables, and the subindex b refers to bed variables.

Notice that the bed velocities (ub, vb, wb) are allowed to be different from zero. In the hypothetical

case that the bed moves, due to the no-slip condition the fluid velocity is equal to the bed velocity.

The free surface and bed kinematic conditions are given by:

ws =
∂zs

∂t
+

∂zs

∂x
us +

∂zs

∂y
vs (2.9)

wb =
∂zb

∂t
+

∂zb

∂x
ub +

∂zb

∂y
vb

Using Equation 2.9 in Equation 2.8 gives the depth averaged mass continuity equation, which
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reads:
∂h

∂t
+

∂hU

∂x
+

∂hV

∂y
= 0 (2.10)

It should be noticed that no approximation has been done in the derivation of Equation 2.10.

Notice also that it is valid even for moving beds.

2.3.3 The 3D shallow water equations. The shallow water approximation

For the sake of simplicity, only one horizontal dimension will be considered in the following

derivation of the shallow water equations. The extension to the second horizontal dimension is

straightforward.

The RANS vertical momentum equation for steady flow reads:

∂uw

∂x
+

∂w w

∂z
= −1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+

∂2w

∂z2

)
− ∂u′w′

∂x
− ∂w′2

∂z
− g (2.11)

The total pressure p can be split into an hydrostatic pressure ph and a dynamic pressure pd.

Assuming a constant density yields:

p = ph + pd (2.12)

ph = ρg(zs − z) + pa

where zs is the free surface elevation, and pa is the atmospheric pressure. The hydrostatic pressure

term ph is balanced by the gravity acceleration −g in Equation 2.11. The scales defined in Table 2.1

will be considered in the derivation.

Variable Scale

u, v Un

w Wn

x, y Ln

z Hn

Pd ρU2
n

u′w′, w′2 u2
n

Table 2.1: Characteristic scales involved in the shallow water approximation

The separation of length scales is the main hypothesis that will be done. It implies that the hor-

izontal length scale Ln is much larger than the vertical length scale Hn. From the mass continuity
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equation, the relation between the horizontal and vertical velocity scales is obtained as:

∂u

∂x
+

∂w

∂z
= 0

Un

Ln

∼ Wn

Hn

(2.13)

where the symbol ∼ accounts for proportional relation. An analysis of the characteristic scales of

the different terms in the vertical momentum equation yields:

∂u w

∂x
+

∂w w

∂z
= −1

ρ

∂pd

∂z
+ ν

(
∂2w

∂x2
+

∂2w

∂z2

)
− ∂u′w′

∂x
− ∂w′2

∂z

UnWn

Ln

∼ W 2
n

Hn

∼ U2
n

Hn

∼ ν
Wn

L2
n

∼ ν
Wn

H2
n

∼ u2
n

Ln

∼ u2
n

Hn

(2.14)

Multiplying Equation 2.14 by
Hn

U2
n

and using the relation between the velocity scales given by

Equation 2.13, the following relations between the characteristic scales are obtained:

H2
n

L2
n

∼ H2
n

L2
n

∼ 1 ∼ νH2
n

UnL3
n

∼ ν

UnLn

∼ u2
n

U2
n

∼ u2
nHn

U2
nLn

(2.15)

The order of magnitude 1 corresponds to the dynamic pressure term. Now lets assume that

the horizontal Reynolds number (Rh =
UnLn

ν
) is much larger than 1, that the turbulence intensity

(
un

Un

) is much smaller than 1, and, as it has been previously assumed, that the horizontal length

scale is much larger than the vertical one. These assumptions are represented mathematically by

the following relations:

Rh >> 1 Un >> un Ln >> Hn (2.16)

Under these hypotheses, the leading term in the vertical momentum equation is the pressure

term. The order of magnitude of the other terms (convection, viscous diffusion and turbulent

stresses) depends on the degree to which the relations 2.16 are fulfilled in the considered flow.

Considering that the assumptions 2.16 apply, the vertical momentum equation reduces to:

∂pd

∂z
≈ 0 (2.17)

Since the pressure at the free surface is equal to the atmospheric pressure pa, it follows directly

from Equations 2.12 and 2.17 an hydrostatic pressure distribution, which is the main shallow water
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hypothesis:

p ≈ ph = ρg(zs − z) + pa (2.18)

It should be noticed that this approximation is just a result of the hypotheses made on the

characteristic scales (Equation 2.16), which are fulfilled in many free surface flows. The horizontal

Reynolds number is almost always much larger than one. The separation between the horizontal

and vertical length scales is actually a limitation on the bed and free surface slopes, which are

usually of the order 0.01, and in very rare situations are larger than 0.1. Finally, the turbulence

intensity is generally smaller than 1. Hence, in many cases it is quite reasonable to assume an

hydrostatic pressure distribution.

Inserting the pressure term given by Equation 2.18 into the horizontal momentum equations

gives the 3D shallow water equations, which read:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (2.19)

∂u

∂t
+

∂u u

∂x
+

∂v u

∂y
+

∂w u

∂z
= −g

∂zs

∂x
− 1

ρ

∂pa

∂x
+ν

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
− ∂u′2

∂x
− ∂u′v′

∂y
− ∂u′w′

∂z

∂v

∂t
+

∂u v

∂x
+

∂v v

∂y
+

∂w v

∂z
= −g

∂zs

∂y
− 1

ρ

∂pa

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
− ∂v′u′

∂x
− ∂v′2

∂y
− ∂v′w′

∂z

The evaluation of the free surface zs can be done from the depth averaged mass continuity

(Equation 2.10).

2.3.4 The 2D depth averaged shallow water equations

The main hypothesis which has been done in order to derive the 3D shallow water equations is the

assumption of an hydrostatic pressure distribution. Now, some more simplifications will be done in

order to obtain the depth averaged version of the shallow water equations. Only the x-momentum

equation will be considered, being the derivation for the y-momentum equation completely analo-

gous. The derivation process consists basically in integrating the x-momentum equation over the

vertical direction, applying Leibnitz’s rule, and using the kinematic free surface and bed surface

conditions. For derivation purposes, the different terms in Equation 2.19 will be classified in con-

vection, pressure gradient, viscous and turbulent diffusion in x-direction, viscous and turbulent

diffusion in z-direction.
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Convection

The integration of the convection terms over the water depth gives:∫ zs

zb

(
∂u

∂t
+

∂u u

∂x
+

∂v u

∂y
+

∂w u

∂z

)
dz =

∂

∂t

∫ zs

zb

u dz − us ws + ub wb (2.20)

+
∂

∂x

∫ zs

zb

u2 dz − us
2∂zs

∂x
+ ub

2∂zb

∂x

+
∂

∂y

∫ zs

zb

v u dz − vs us
∂zs

∂y
+ vb ub

∂zb

∂y

+
∂

∂z

∫ zs

zb

w u dz − ws us
∂zs

∂z
+ wb ub

∂zb

∂z

Applying the kinematic conditions at the bed and free surface (Equation 2.9), the depth inte-

grated convection term (Equation 2.20) can be rewritten as:

∂

∂t

∫ zs

zb

u dz +
∂

∂x

∫ zs

zb

u2 dz +
∂

∂y

∫ zs

zb

u v dz (2.21)

In order to solve the integrals in Equation 2.21, a shape function f is defined as:

u(x, y, z) = U(x, y)f(x, y, z) (2.22)

The shape function f is allowed to vary not only in z, but also in x and y, since the vertical

profile of the horizontal velocity varies in shape from one point to another. Considering the defi-

nition of the depth averaged velocity U given by Equation 2.4, and defining a sigma coordinate as

σ =
z

h
, the following condition applies to the shape function f :

∫ 1

0

f(x, y, σ) dσ = 1 (2.23)

In shallow water flows with a strong homogeneous behaviour in the vertical direction the shape

function is almost constant, with a value near to 1. In those situations the following approximation

can be done: ∫ 1

0

f 2 dσ ≈ 1 (2.24)

Assuming approximation 2.24, and using Equation 2.22 in Equation 2.21, gives the final form

of the depth averaged convection terms in the x-momentum equation as:

∂hU

∂t
+

∂hU2

∂x
+

∂hUV

∂y
(2.25)

An alternative way to compute the integrals in Equation 2.21 is to split the horizontal velocity
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into its depth averaged value plus a fluctuation which depends on the vertical coordinate as:

u = U + U ′ v = V + V ′ (2.26)

where U ′ = U ′(z), while U is z independent. Using decomposition 2.26 into Equation 2.21 yields:

∂hU

∂t
+

∂hU2

∂x
+

∂hUV

∂y
+

∂Duu

∂x
+

∂Duv

∂y
(2.27)

with:

Duu =

∫ zs

zb

U ′2dz Duv =

∫ zs

zb

U ′V ′dz (2.28)

The terms involving Duu and Duv are often called longitudinal and lateral dispersion stresses

respectively. Their relative importance respect to the convective and turbulent stress fluxes depends

on the magnitude of the fluctuating velocities U ′ and V ′. In the limit case of a complete uniform

velocity profile over the vertical coordinate, the dispersion terms vanish. In a general case their

value is strongly dependent on the existence of vertical secondary currents, which appear typically

when the curvature effects in the velocity field are important. These secondary flows create non-

uniformities in the vertical profile of the horizontal velocities u and v. Rastogi and Rodi [116]

computed the shallow water flow in a longitudinal channel with secondary flows due to buoyancy

effects, and found that the bed friction tends to damp the secondary flows, diminishing in this way

the relative importance of the dispersion terms. Hence, a better agreement between a 2D and a 3D

model is obtained for rough beds rather than for smooth beds.

The dispersion terms Duu and Duv are generally neglected in the depth averaged equations,

which is equivalent to assume the approximation given by Equation 2.24. In recent works, Duan [43]

and Lien at al. [81] proposed approximated expressions for the dispersion terms, based on experi-

mental velocity profiles obtained in curved channels. Both formulations are specially suitable for

bend channels for two reasons: first, due to the specific vertical velocity profile assumed; and sec-

ond, because they need the definition of a streamwise direction, as well as an inner and outer bank.

Both formulations are quite recent and, to our knowledge, have only been tested in bend channels,

but not in general flow conditions. An alternative way to account for the dispersion terms is to

increase the effective eddy viscosity. However, the value of the effective viscosity is empirical and

it depends on the problem geometry, as well as on the flow conditions. Molls and Chaudry [93]

use and effective stress including the laminar stress, the turbulent stress and the dispersion stress.

The same idea is used by Minh-Duc et al. [92], which introduces a coefficient in the k − ε model

in order to increase or decrease the eddy viscosity value.
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Pressure gradient

The integral of the pressure gradient over the water depth is given by:

−
∫ zs

zb

g
∂zs

∂x
dz = −g

∂zs

∂x
(zs − zb) = −gh

∂zb

∂x
− gh

∂h

∂x
(2.29)

Viscous and turbulent diffusion in x-direction

Considering an effective stress txx, which includes the viscous and turbulent stresses in the x-

direction, the integral of the viscous and turbulent diffusion terms can be expressed as:

∫ zs

zb

∂txx

∂x
dz =

∂

∂x

∫ zs

zb

txx dz − ∂zs

∂x
txx(zs) +

∂zb

∂x
txx(zb) (2.30)

with:

txx = ν
∂u

∂x
− u′2 (2.31)

The longitudinal stress at the bed is zero (txx(zb) = 0). Considering that at the free surface

the longitudinal stress is rather small (specially when compared with the vertical stress txz), the

term txx(zs) can be neglected in Equation 2.30. With this approximation, using Equation 2.22 into

Equation 2.30 gives:

∫ zs

zb

∂txx

∂x
dz =

∂

∂x

∫ zs

zb

νf
∂U

∂x
dz +

∂

∂x

∫ zs

zb

νU
∂f

∂x
dz − ∂

∂x

∫ zs

zb

u′2 dz (2.32)

If it is assumed, as it has been done in Equation 2.24, that the variations of the shape function f

are smaller than its value, i.e. the variations of the horizontal velocity in the z-direction are small,

then, the second term in the right hand side of Equation 2.32 can be neglected:

∂

∂x

∫ zs

zb

νU
∂f

∂x
dz ≈ 0 (2.33)

With this new approximation, and using Equation 2.23, the final form of the depth averaged

viscous and turbulent diffusion terms in the x-direction is obtained as:

∂

∂x

(
νh

∂U

∂x

)
− ∂h < u′2 >

∂x
(2.34)

where < u′2 > represents the depth averaged value of the Reynolds stress u′2.
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Viscous and turbulent diffusion in z-direction

The integral of the vertical diffusion term gives:

∫ zs

zb

ν
∂2u

∂z2
dz +

∫ zs

zb

∂u′w′

∂z
dz = ν

∂u

∂z

∣∣∣∣
zs

− ν
∂u

∂z

∣∣∣∣
zb

+ (u′w′)zs − (u′w′)zb
(2.35)

= τs,x − τb,x

where τs,x and τb,x are respectively the free surface and bed shear stresses in the x-direction.

The depth averaged equations

With the former approximations, the final form of the depth averaged shallow water equations is

obtained as:
∂h

∂t
+

∂hUj

∂xj

= 0 (2.36)

∂hUi

∂t
+

∂hUiUj

∂xj

= −gh
∂h

∂xi

− gh
∂zb

∂xi

− h

ρ

∂pa

∂xi

− τb,i

ρ
+

τs,i

ρ
+

∂

∂xj

(
νh

∂Ui

∂xj

)
− ∂h < u′

iu
′
j >

∂xj

The Reynolds stresses must be computed by means of a turbulence model. Leaving the turbu-

lent terms apart, the depth averaged equations are a system of 3 partial differential equations with

3 unknowns (U, V, h), which are defined over a two-dimensional spatial domain. This is an impor-

tant reduction in the computational cost with respect to the original RANS equations, which are 4

equations defined over a 3D spatial domain, with the additional inconvenience of the free surface

moving boundary. On the other hand, the approximations made when deriving Equations 2.36

reduce their range of application. Nevertheless, when applied to shallow water flows they keep a

good compromise between accuracy and computational cost.

2.3.5 Summary of the derivation hypotheses

Through the derivation of the depth averaged shallow water equations several assumptions have

been done. It is very important to have in mind the approximations made in each different term,

in order to know the limitations of the equations, when they can be applied, and to understand and

interpret the results obtained from them. The different hypotheses made are summarised below,

and both a physical and a mathematical interpretation are done.

• Constant density:

The incompressible RANS equations have been taken as the base for the derivation. By as-

suming incompressible flow the density variations with the pressure gradients are neglected,

which is a reasonable hypothesis in water flows.
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• Hydrostatic pressure:

The hydrostatic pressure distribution is mainly a consequence of assuming a separation of

the vertical and horizontal characteristic scales. This occurs when both the horizontal length

and the horizontal velocity are larger than the vertical ones. This is a typical characteristic

of quasi-2D flows. The definition of the horizontal and vertical scales is not trivial, and

depends on the flow conditions and geometry. In a long shallow wave propagation problem

the horizontal scale is given by the wave length, while the vertical scale is given by the

water depth, since it is over those distances that the velocity and pressure changes occur. In

some cases the vertical length scale is given by the variations in the bed and free surface

elevation rather than by the water depth, and therefore, the condition
Hn

Ln

<< 1 is actually

a restriction on the free surface and bed slopes. Therefore, the shallow water equations may

be applied to flows with a large water depth if the bed slope is small. Some researchers

make a distinction between shallow water flow and deep water flow depending on the ratio

between the inertial and bed friction forces [5], although the shallow water equations may be

used in both situations. Apart from the separation of scales, there are another two conditions

which must be fulfilled in order to assure an hydrostatic pressure distribution: the Reynolds

number must be much larger than 1, and the turbulence intensity must be smaller than 1.

Both conditions are usually fulfilled in shallow water flows. Finally, it should be noted that

the fact of assuming a separation of length scales does not mean that the vertical velocity is

neglected, as it is clearly shown in the 3D shallow water model (Equation 2.19).

• Homogeneous behaviour in the vertical direction:

The physical meaning of this hypothesis is that the values of both the velocity and the

Reynolds stresses, are almost independent of the vertical coordinate. This cannot be as-

sumed as frequently as the previous hypothesis. Mathematically it can be expressed in 3

conditions which affect the convection and the diffusion terms in the equations:∫ zs

zb

f 2 dz ≈ 0
∂

∂x

∫ zs

zb

νU
∂f

∂x
dz ≈ 0 − ∂zs

∂x
txx(zs) +

∂zb

∂x
txx(zb) ≈ 0

where f is the shape function as defined in Equation 2.22.

2.3.6 The non-dimensional depth averaged shallow water equations

One important difference between the shallow water equations and the Navier-Stokes equations is

that in the former ones the vertical dimension plays a different role than the horizontal dimension.

This is in direct relation with the assumption of an hydrostatic pressure distribution. For this

reason, different non-dimensional variables should be defined for the horizontal and the vertical
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length scales. The non-dimensional variables for the shallow water equations are defined as:

x̃ =
x

Ls

ỹ =
y

Ls

z̃ =
z

Zs

h̃ =
h

Hs

Ũ =
U

Us

ρ̃ =
ρ

ρs

(2.37)

The non-dimensional time is defined with the horizontal velocity scale and the horizontal length

scale. In order to avoid imposing additional constraints, different length scales have been defined

for the vertical coordinate and for the water depth. Introducing the non-dimensional variables in

the depth averaged equations 2.36 gives:

∂h̃

∂t̃
+

∂h̃Ũj

∂x̃j

= 0 (2.38)

∂h̃Ũi

∂t̃
+

∂h̃ŨiŨj

∂x̃j

= −g
Hs

U2
s

h̃
∂h̃

∂x̃i

− g
Zs

U2
s

h̃
∂z̃b

∂x̃i

+
Lscf

Hs

Ũi +
1

Re

∂

∂x̃j

(
h̃
∂Ũi

∂x̃j

)
− ∂h̃ ˜< u′

iu
′
j >

∂x̃j

where the free surface shear and the variations in atmospheric pressure have not been considered.

From the non-dimensional equations it is obvious that, in order to have fully similarity solutions,

the water depth scale must be equal to the vertical scale (Zs = Hs). In other case the hydrostatic

pressure term and the bed slope term would not be proportional. With this condition the equations

depend on three non-dimensional parameters:

Fr =
Us√
gHs

Re =
UsLs

ν
T =

Hs

cfLs

(2.39)

While the non-dimensional incompressible Navier-Stokes equations depend only on the Reynolds

number, the depth averaged shallow water equations depend on three parameters. The parameter

T appears because different length scales have been chosen for the vertical and horizontal dimen-

sions, and also because a logarithmic profile has been assumed in order to compute the bed friction.

In the case that Hs = Ls, the non-dimensional number T becomes just a restriction on the bed fric-

tion coefficient T =
1

cf

. The Froude number appears from the assumption of hydrostatic pressure

distribution, which is a simplification of the vertical momentum equation. The Froude number is

equivalent to the Mach number in the compressible Navier-Stokes equations. Both of them are the

ratio between the fluid speed and the celerity of pressure waves. If the Froude number is greater

than 1 the flow is supercritical and the information travels only in the downstream direction. In the

case of the shallow water equations, since the pressure is hydrostatic, the pressure waves are also

called gravity waves.
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2.3.7 Bed friction

The bed friction has a double effect on the depth averaged shallow water equations. First, it

produces a friction force (τ b = (τb,x, τb,y)) opposite to the mean velocity, and second, it produces

turbulence. Both effects can be characterised by the bed friction velocity uf , which is the wall

friction velocity (u∗) of the bed surface. However, in the depth averaged equations the bed friction

velocity cannot be computed from a wall function approach (section 1.4), since the equations are

not resolved in the vertical direction. Instead, it is related to the depth averaged velocity by a bed

friction coefficient.

The bed shear stress can be expressed as:

|τ b| = ρu2
f = ρcf |U|2 (2.40)

where cf =
u2

f

|U|2 is the bed friction coefficient. There are several expressions which permit to

approximate the bed friction coefficient. Most of them assume fully developed channel flow, and

all the water depth is approximated as a logarithmic boundary layer. In this case the horizontal

velocity can be expressed as a function of the friction velocity and the roughness height (Ks) as

(see Equation 1.33 for K+
s > 70):

|u| =
uf

κ
ln

(
30

z

Ks

)
(2.41)

where |u| is the module of the mean velocity. The roughness height Ks is a measure of the bed

surface rugosity. It has length dimensions. Equation 2.41 should only be applied for z ≥ Ks

30
. For

lower values of z Equation 2.41 gives a negative velocity. The depth averaged horizontal velocity

can be obtained after integration of Equation 2.41 over the water depth as:

|U| =
1

h

∫ zs

zb

|u| dz =
uf

κ

[
ln

30h

Ks

− 1 +
Ks

30h

]
(2.42)

Assuming that the water depth is much larger than the roughness height, Equation 2.42 is

simplified as:

|U| =
uf

κ
ln

11h

Ks

(2.43)

which is known as Keulegan’s law. From Equation 2.43 it is obvious that for the same depth

averaged velocity |U|, the friction velocity diminishes as the water depth increases. The friction

coefficient cf is then obtained as:

c
−1/2
f =

|U|
uf

= 2.5 ln
11h

Ks

(2.44)
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An approximation of Keulegan’s law was proposed by Manning and Strickler as:

c
−1/2
f = 8.1

(
h

Ks

)1/6

(2.45)

An alternative way to evaluate the bed friction which is widely used in hydraulic engineering

is the Manning’s formula, which uses the Manning’s coefficient n instead of the roughness height.

The friction coefficient is given by:

cf = g
n2

h1/3
(2.46)

Comparing the friction coefficients given by Manning’s formula (Equation 2.46) and by the

Manning-Strickler approximation (Equation 2.45), the following relation between the Manning’s

coefficient and the roughness height is obtained:

n ≈ K
1/6
s

25
(2.47)

Manning’s formula is specially suited for rough river beds. Schlichting [121] proposed an

alternative formula for evaluating the bed friction coefficient in smooth river beds:

cf = 0.027

(
ν

|U|Rh

)1/4

(2.48)

where Rh is the hydraulic radius.

2.3.8 Boundary conditions

There are two main kind of boundaries in the shallow water models: open boundaries and wall

boundaries. The treatment of wall boundaries has been already presented in section 1.4.

The number of boundary conditions that must be specified at any open boundary depends on the

direction in which information travels across that boundary. In shallow water flows the direction

in which information propagates depends on the sign of the eigenvalues of the Jacobian matrix of

the normal flux, which are given by (see chapter 3):

λ1 = Unx + V ny λ2 = λ1 + c
√

n2
x + n2

y λ3 = λ1 − c
√

n2
x + n2

y (2.49)

where n = (nx, ny) is the normal vector to the surface, and c =
√

gh is the wave celerity. It will be

assumed that the normal vector to an open boundary points outward. Four possible open boundary

conditions arise depending on the sign of the eigenvalues: supercritical inlet, subcritical inlet,

subcritical outlet and supercritical outlet. If all the eigenvalues are negative the three characteristic

lines are entering the domain, and three boundary conditions must be imposed. This is the case
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of supercritical inlet. It occurs when the flow enters the domain (λ1 < 0) and the wave celerity

is smaller than the normal velocity to the boundary (λ2, λ3 < 0). If the flow enters the domain

but the wave celerity is larger than the normal velocity, there are two negative eigenvalues (λ1, λ3)

and one positive (λ2). In this case only two characteristic lines enter the domain, and therefore,

two boundary conditions must be imposed. This is the subcritical inlet boundary condition. The

subcritical outlet occurs when the flow exits the domain and the wave celerity is larger than the

normal velocity. In this case two eigenvalues are positive (λ1, λ2), only one characteristic line

enters the domain, and thus, only one boundary condition must be imposed, generally the water

depth. Finally, if all the eigenvalues are positive all the information travels outward the domain,

and no boundary condition is needed (supercritical outlet).

2.4 Turbulence modelling in shallow water flows

2.4.1 Turbulent length scales in shallow flows

It has already been discussed in section 2.1 the 2D character of the large turbulent structures in

shallow water flows. As it is pointed out by Uijttewaal and Tukker [138], the turbulence model

must account for both, the 3D structures produced by bed friction and the quasi-2D large structures

produced by horizontal strain. If a depth averaged model is used, the 2D character of the flow is

already taken into account in the transport equations by assuming a uniform vertical profile of the

velocity, while the 3D production is usually included via a source term which depends on the bed

friction velocity. In the same way, even when a 3D shallow water approach is used, the turbulence

model should account for the anisotropy of turbulence in the vertical and horizontal directions.

Bijvelds et al. [12] modelled the flow in a square harbour using the 3D shallow water equations.

The turbulence generated by bed friction was modelled with the standard 3D k − ε model, while

the horizontal turbulent stresses were computed with a 2D depth averaged k−ε model. The results

obtained were better than those given by the standard 3D k − ε model.

Several depth averaged turbulence models are discussed in this section, and a depth averaged

algebraic stress model is proposed in the next section. All the models presented in this chapter

have been included in the numerical solver described in chapter 3. Three of them, the mixing

length model, the k − ε model of Rastogi and Rodi, and the algebraic stress model, have been

systematically used in the practical applications studied in this thesis.
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2.4.2 The Boussinesq assumption in shallow flows

In section 1.3 it was presented the Boussinesq assumption, which is used in the eddy viscosity

models in order to relate the Reynolds stresses and the mean velocity gradients as:

u′
iu

′
j = −2νt

(
sij − 1

3
skkδij

)
+

2

3
kδij (2.50)

From the six Reynolds stresses (u′
iu

′
j), only 3 of them (u′2, u′v′ and v′2) appear in the depth

averaged equations. Assuming incompressible flow, they can be approximated as:

−u′2 = 2νt
∂u

∂x
− 2

3
k (2.51)

−u′v′ = νt

(
∂u

∂y
+

∂v

∂x

)
−v′2 = 2νt

∂v

∂y
− 2

3
k

What actually appears in the equations is the depth averaged value of the Reynolds stresses.

In shallow flows the eddy viscosity can be assumed to be homogeneous in the vertical direction,

except in the bed boundary layer and in a thin layer near the free surface. With this approximation

the vertical average of Equations 2.51 yields:

− < u′2 > = 2νt
∂U

∂x
− 2

3
< k > −us

∂zs

∂x
+ ub

∂zb

∂x
(2.52)

− < u′v′ > = νt
∂U

∂y
+

∂V

∂x
− us

∂zs

∂y
+ ub

∂zb

∂y
− vs

∂zs

∂x
+ vb

∂zb

∂x

− < v′2 > = 2νt
∂V

∂y
− 2

3
< k > −vs

∂zs

∂y
+ vb

∂zb

∂y

Assuming a separation between the horizontal and vertical scales (Ls >> Hs), Equations 2.52

can be approximated as:

− < u′2 > = 2νt
∂U

∂x
− 2

3
< k > (2.53)

− < u′v′ > = νt

(
∂U

∂y
+

∂V

∂x

)
− < v′2 > = 2νt

∂V

∂y
− 2

3
< k >

which is an analogous expression to the original Boussinesq approximation, with the only differ-

ence that now all the variables are depth averaged. In order to simplify the notation, hereafter the

symbols <> will be omitted when referring to depth averaged values.
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2.4.3 The depth averaged parabolic eddy viscosity model

This is the simplest turbulence model for shallow flows. Assuming an equilibrium state of the

flow, the shear and the pressure forces in the fluid element of Figure 2.1 should be balanced. By

assuming an equilibrium state of the flow the convection terms in the momentum equation can be

neglected. The only mass force is the gravity acceleration, which acts in the vertical direction.

Figure 2.1: Balance of forces in a fluid element in uniform channel flow.

The equilibrium of forces in the x-direction gives:

τh(z) = −∂Fp

∂x
= −ρg(h − z)

∂h

∂x
(2.54)

where Fp = ρg
(h − z)2

2
is the total pressure force on each side of the fluid element. For z = zb =

0, the friction force is equal to the bed friction τb,x:

τb,x = τh(z = 0) = −ρgh
∂h

∂x
(2.55)

With this condition Equation 2.54 can be rewritten as:

τh(z) = τb,x(1 − z

h
) = ρu2

f (1 − z

h
) (2.56)

Equation 2.56 predicts a linear relation between the shear stress and the vertical coordinate z.

The shear stress in a turbulent boundary layer can be expressed in function of the eddy viscosity

as:

τh(z) = ρν ′
t(z)

∂u

∂z
(2.57)

where ν ′
t(z) is the eddy viscosity as a functions of z, and not its depth averaged value. Assum-

ing a logarithmic velocity profile, which is a sensible approximation in fully developed turbulent
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boundary layer flows, Equation 2.57 becomes:

τh(z) = ρν ′
t(z)

uf

κz
(2.58)

From Equations 2.56 and 2.58, a parabolic profile for the eddy viscosity is obtained as:

ν ′
t(z) = ufκz(1 − z

h
) (2.59)

Finally, the depth averaged eddy viscosity is obtained after vertical integration of Equation 2.59,

which yields.

νt =
1

h

∫ zs

zb

ufκz(1 − z

h
) dz =

1

6
κufh (2.60)

The eddy viscosity ν ′
t(z) can be expressed as the product of a velocity scale u′

s(z) and a length

scale l′s(z) as:

ν ′
t(z) = l′s(z)u′

s(z) (2.61)

The velocity scale is defined in a boundary layer basis as:

u′
s(z) = l′s(z)

∂u

∂z
= l′s(z)

uf

κz
(2.62)

From Equations 2.62, 2.61 and 2.59, a turbulent length scale can be defined as a function of

the vertical coordinate z:

l′s(z) = κz

√
1 − z

h
(2.63)

The parabolic eddy viscosity model is very simple. It does not account for the effect of hor-

izontal velocity gradients, but only for the turbulence generated by bed friction. It leads to very

low eddy viscosity values when the turbulent production due to horizontal shear is large. It does

not account for transport and dissipation processes. Despite its simplicity, it is sometimes used in

simple channel flows. It has been used to model channel bend flows by Hsieh and Yang [59], Lien

et al. [81] and Duan [43].

2.4.4 The depth averaged mixing length model

This is a depth averaged version of the original mixing length model presented in chapter 1. In

order to account for both the horizontal and the vertical production of turbulence, the total eddy

viscosity is split into an horizontal νh
t and a vertical νv

t component. The horizontal eddy viscosity

accounts for the turbulence produced by horizontal shear. It is computed as:

νh
t = l2s

√
2SijSij = l2s

√
2(S2

uu + S2
vv + 2S2

uv) (2.64)
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where ls is the characteristic turbulent length scale, and Sij is the horizontal mean strain-rate tensor

computed from the depth averaged velocity as:

Sij =
1

2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
(2.65)

The vertical eddy viscosity is generated by the vertical velocity gradients produced by bed

friction. Therefore, it is computed from the parabolic eddy viscosity model as:

νv
t =

1

6
κufh (2.66)

The total eddy viscosity is evaluated from the horizontal and vertical values as:

νt =
√

(νh
t )2 + (νv

t )2 = l2s

√
2

(
∂U

∂x

)2

+ 2

(
∂V

∂y

)2

+

(
∂U

∂y
+

∂V

∂x

)2

+

(
1

6

κufh

l2s

)2

(2.67)

In the inner part of the domain the turbulent length scale is assumed to be dependent on the

water depth, since it is a restriction on the size of the turbulent eddies. In order to estimate its value,

the turbulent length given by the parabolic eddy viscosity model (Equation 2.63) is averaged over

the vertical coordinate, which yields:

ls =
1

h

∫ zs

zb

κz

√
1 − z

h
dz ≈ 0.267κh (2.68)

Equation 2.68 is not valid near the walls, as it would predict very large length scales. Instead,

the wall distance is used as the length scale in the near wall regions. The final expression for the

eddy viscosity given by the model is:

νt = l2s

√
2

(
∂U

∂x

)2

+ 2

(
∂V

∂y

)2

+

(
∂U

∂y
+

∂V

∂x

)2

+
(
2.34

uf

κh

)2

(2.69)

ls = min (0.267κh, κdwall)

where dwall is the distance to the nearest wall. In the absence of horizontal velocity gradients,

Equations 2.69 and 2.60 are equal. Hence, the depth averaged mixing length model tends to the

parabolic eddy viscosity model when the turbulence is mainly produced by bed friction. This is the

case of flows with a very low water depth, a relatively rough bed surface, and small horizontal ve-

locity gradients. The depth averaged mixing length model was used in channel flow computations

by Jia and Wang [65], among others.
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2.4.5 Some depth averaged k − ε models

The k − ε model of Rastogi and Rodi

The first k − ε model for shallow water flows was proposed by Rastogi and Rodi [116] as a depth

averaged version for quasi-2D flows of the original k−ε model of Jones and Launder [67]. Instead

of solving for the three-dimensional turbulence and dissipation, it solves for their depth averaged

value < k > and < ε >. The symbols <> referring to depth averaged values will be omitted for

the sake of simplicity in the notation.

Since an homogeneous behaviour in the vertical direction is assumed in shallow flows, the

modelled equations are very similar to those of the 2D standard k − ε model. Nevertheless, it is

necessary to introduce a production term in order to account for the production of turbulence due

to bed friction. The equations of the model are given by:

∂hk

∂t
+

∂Ujhk

∂xj

=
∂

∂xj

(
(ν +

νt

σk

)h
∂k

∂xj

)
+ hPk + hPkv − hε (2.70)

∂hε

∂t
+

∂Ujhε

∂xj

=
∂

∂xj

(
(ν +

νt

σε

)h
∂ε

∂xj

)
+ hc1ε

ε

k
Pk + hPεv − hc2ε

ε2

k

νt = cμ
k2

ε
Pk = 2νt(S

2
uu + S2

vv + 2S2
uv)

Pkv = ck

u3
f

h
ck =

1

c
1/2
f

Pεv = cε

u4
f

h2
cε = 3.6

c2εc
1/2
μ

c
3/4
f

cμ = 0.09 c1ε = 1.44 c2ε = 1.92 σk = 1.0 σε = 1.31

where cf is the bed friction coefficient as defined in Equation 2.40 (cf =
|τ b|

ρ|U|2 =
u2

f

|U|2 ). The five

constants of the model (cμ, σk, σε, c1ε, c2ε) are assumed to have the same values as in the original

k − ε model (Equation 1.20). The term Pk accounts for the production of turbulent energy due to

horizontal velocity gradients. The effect of the bed is included via the production terms Pkv and

Pεv. These source terms are responsible for modelling the 3D turbulence generated by bed friction.

In uniform channel flow conditions, all the production of turbulent kinetic energy is due to bed

friction. Turbulence is in an equilibrium state, and the k − ε equations reduce to:

Pkv = ε Pεv = c2ε
ε2

k
(2.71)

Using the expressions for Pkv and Pεv given by Equation 2.70, it is straightforward to show
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that the values of the turbulent energy and dissipation predicted by the model in uniform channel

flow are given by:

ku =
c2ε

cε

c2
ku

2
f =

|U|1/2u
3/2
f

1.08
εu = ck

u3
f

h
=

|U|u2
f

h
(2.72)

With these values the eddy viscosity is equal to:

νt,u = cμc
3
k

c2
2ε

c2
ε

ufh = 0.08ufh (2.73)

which actually is a very similar value to that one given by the depth averaged parabolic model

(Equation 2.60). On the other hand, when the horizontal shear is much larger than the vertical

shear, the vertical production terms are negligible compared to the horizontal shear production

(Pkv ≈ 0, Pεv ≈ 0), and the model reduces to the standard 2D k − ε model.

A slight modification of the coefficient cε has been used in recent works by Minh-Duc et al.

[92]. The expression used is given by:

cε =
1

(e∗σt)1/2

c2εc
1/2
μ

c
3/4
f

(2.74)

where σt is a Prandtl/Schmidt number relating the eddy viscosity and diffusivity for the transport

of scalars (σt = 0.7 in [92]), and e∗ is an adjustable empirical parameter. The value 3.6 in the

definition of cε in Equation 2.70, corresponds to a value of e∗ = 0.11 in Equation 2.74. Minh-Duc

et al. [92] report values of the parameter e∗ ranging from 0.15 in flumes to 0.6 is meandering

rivers. In the numerical solver used in this thesis, the original definition of cε was used, since

Equation 2.74 would need a previous calibration for each practical application.

The modified constants of Booij

The production terms Pkv and Pεv in Equation 2.70 depend on two coefficients, ck and cε. The value

of these coefficients determine the turbulence level in uniform channel flow conditions (Equa-

tion 2.72). Booij [14] proposed the following modification in the value of ck and cε:

cB
k =

1

10
ck cB

ε =
1

44
cε (2.75)

where the superindex B refers to Booij. The effect of diminishing the coefficients ck and cε in such

a way is that the production terms due to bed friction (Pkv and Pεv) are strongly reduced. Using the

modified coefficients of Booij to evaluate the turbulent kinetic energy and dissipation in uniform
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channel flow (Equation 2.72) gives:

kB
u = 0.44ku εB

u = 0.10εu νB
t,u = 1.94νt,u (2.76)

where the values ku, εu, νt,u are those given by the Rastogi and Rodi model. Hence, in uniform

channel flow conditions, the modification proposed by Booij reduces the turbulent kinetic energy

and dissipation by a factor of 0.44 and 0.10 respectively, and increases the eddy viscosity by a factor

of 1.94. On the other hand, in flows dominated by horizontal shear the differences with the Rastogi

and Rodi model smear, because the term Pkv becomes much smaller than Pk in Equation 2.70.

The k − ε model of Babarutsi and Chu

Babarutsi and Chu [3] proposed a two-length-scale depth averaged k − ε model. The main differ-

ence with Rastogi’s model is the way in which the effects of the 3D turbulence produced by bed

friction are introduced. Babarutsi and Chu propose to split the total eddy viscosity into a 3D part

and a 2D part:

νt = ν2D
t + ν3D

t (2.77)

The 3D eddy viscosity accounts for the small scale bed generated turbulence, and it is computed

with a similar equation to that of the depth averaged parabolic eddy viscosity (Equation 2.60). The

equation for ν3D
t used by Babarutsi and Chu is given by:

ν3D
t = 0.08ufh (2.78)

which is the same value given by the Rastogi model for uniform channel flow (Equation 2.73). The

2D part is computed from k′ and ε′, which account for the large-scale 2D turbulence generated by

horizontal shear, as:

ν2D
t = cμ

k′2

ε′
(2.79)

Notice that the turbulent kinetic energy k′ does not include the 3D bed generated turbulence.

The transport equations used to compute k′ and ε′ are similar to those used in Rastogi’s model

(Equation 2.70), but the vertical production terms are zero (Pkv = Pεv = 0) and a new term F ′ is

introduced in order to account for the transfer of energy between the large 2D scales and the small

3D scales. The equations for k′ and ε′ are given by:

∂hk′

∂t
+

∂Ujhk′

∂xj

=
∂

∂xj

(
(ν +

νt

σk

)h
∂k′

∂xj

)
+ hPk′ − hF ′ − hε′ (2.80)

∂hε′

∂t
+

∂Ujhε′

∂xj

=
∂

∂xj

(
(ν +

νt

σε

)h
∂ε′

∂xj

)
+ hc1ε

ε′

k′ (Pk′ − (1 − c3ε)F
′) − hc2ε

ε′2

k′
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with the constant c3ε = 0.8. Note that in Equation 2.80 the diffusion term is modelled with the

total eddy viscosity νt. On the other hand, the production term Pk′ is computed with the expression

given in Equation 2.70, but using the 2D part of the eddy viscosity ν2D
t . All the constants of the

model are the same as in Rastogi’s model. The sink term F ′ is associated with the negative work

done by the large scale turbulent fluctuations against the bed friction forced. It is computed as:

F ′ =
cf

[
u′2(2U2 + V 2) + 2u′v′UV + v′2(U2 + 2V 2)

]
h
√

U2 + V 2
(2.81)

where the Reynolds stresses u′2, u′v′, v′2 are computed from the Boussinesq approximation using

the large scale eddy viscosity ν2D
t .

In uniform channel flow, the production of large scale turbulence due to horizontal shear is zero

(Pk′ = 0). The large scale turbulent kinetic energy equation reduces to 0 = −F ′ − ε′. Therefore,

all the large scale turbulent variables are zero, i.e:

k′
u = 0 ε′u = 0 ν2D

t,u = 0 νt,u = ν3D
t = 0.08ufh (2.82)

where the subindex u refers to uniform channel flow values. In this case all the turbulence is 3D,

and generated by bed friction. The total eddy viscosity is similar to that one given by the Rastogi

model. On the other hand, in a flow dominated by horizontal shear, the bed friction velocity (uf )

tends to zero, and so do the term F ′ and the 3D eddy viscosity (F ′ ≈ 0, ν3D
t ≈ 0). In this situation

all the turbulence is 2D, and generated by horizontal shear. The equations for k ′ and ε′ reduce to

the standard 2D k − ε model.

This model has been used by Babarutsi et al. in [5], with the constant c3ε = 1, to compute

shallow recirculating flows dominated by friction. It has also been used by Babarutsi and Chu

to model shallow mixing layers [4], where they obtained the same results with c3ε=1 and with

c3ε = 0.8.

Differences between the 3 versions of the k − ε model

The main differences between the previous depth averaged k − ε models, appear in friction domi-

nated flows. The modification of Booij increases the turbulent diffusion of the model, reduces the

bed generated turbulence, and as a consequence, the large scale turbulence is increased. We have

not found concluding results showing that the modification proposed by Booij improves the results

of the original model of Rastogi in general flow conditions. Furthermore, the work by Minh-Duc

et al. [92] seems to show that the optimum value of the constant cε is problem dependent.

The version of Babarutsi and Chu is more interesting from a conceptual point of view, since

it distinguish between two different turbulent length scales. The main differences with Rastogi’s
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model appear in shear flows dominated by friction. Both models converge to the standard 2D k−ε

model for zero bed friction. In uniform channel flow, where all the turbulence is generated by

bed friction, both models give the same eddy viscosity (Equations 2.73 and 2.82). It is in shear

layers dominated by friction where both models show some differences. Altai et al. [2] estimate

that, in order to produce the modelled effects introduced by the term F ′, the water depth should

be approximately 100 times smaller than the horizontal turbulent length scale, i.e. the effects of

F ′ are only significant in flows which are strongly dominated by friction. Babarutsi et al. [5]

compared the results given by the models of Babarutsi and Rastogi in a recirculating shallow water

flow dominated by friction. Despite the different turbulent energy and eddy viscosity predicted by

the models, no significant differences in the mean flow field, neither in the recirculation length,

were found, and therefore, no conclusion was obtained regarding which model performs better.

Both models were compared again by Babarutsi and Chu [4] to model transverse mixing layers in

shallow flows dominated by friction. In this case they found that the results given by the model of

Babarutsi were in better agreement with the experimental data.

All the results presented in this work have been done with the original depth averaged model of

Rastogi and Rodi. Although the three versions of the models were implemented in the numerical

solver, no systematic comparison between models has been done in the practical applications.

Nevertheless, in the applications studied in this thesis, no differences are expected to be found in

the mean flow field obtained with the different versions of the model. This is because the flow in

the vertical slot fishway (chapter 8) and in the 90o bend (chapter 7) is not dominated by bed friction.

In the Crouch estuary (chapter 6) the turbulence is generated by friction, but the turbulence level

is low, and it has very little influence on the mean velocity field. In the Crouch estuary some

differences in the turbulent energy field would probably be obtained with Booij’s and Babarutsi’s

versions of the model.

The reason of using the original model of Rastogi and Rodi is that it has been used in many

river flow and channel simulations, showing a good behaviour [152, 92, 115, 149, 12, 154, 104].

On the other hand, the versions of Booij and Babarutsi have not been so extensively used. In any

case, as it has been argued, only in the Crouch estuary some differences between the different

versions are expected, and in this case, only in the turbulent kinetic energy field, and not in the

mean flow field.

Boundary conditions

While the parabolic and mixing length models assume an equilibrium state of turbulence, the

k − ε model solves the turbulent kinetic energy and dissipation transport equations, and thus, it

needs boundary conditions for these two variables. The wall boundary condition has already been

discussed in section 1.4. In the same way as in the shallow water equations, the boundary condition

at the open boundaries depends on the direction in which information propagates. In this case the
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convective direction is given by the depth averaged velocity. Hence, at the inlet boundaries the

values of k and ε must be imposed, while at the outlet boundaries no condition is needed.

The turbulent kinetic energy and dissipation at the inlet boundaries can be evaluated in sev-

eral ways. Sometimes the turbulent energy k or the turbulence intensity Tu can be approximated

from experimental values or from previous experience in similar flows. If the turbulence intensity

is known, then the turbulent kinetic energy and the dissipation can be approximated at the inlet

boundary as:

ki ≈ 3

2
(TuUi)

2 εi ≈ 0.09
k2

i

νt,i

(2.83)

where the subindex i refers to inlet boundary values, and νt,i is an approximated value for the

eddy viscosity at the inlet boundary. However, in general it may be difficult to estimate the values

of νt and Tu at the inlet boundary. An alternative method is to assume fully developed uniform

channel flow at the inlet. In that case the values of the turbulent energy and dissipation are given

by Equation 2.72:

ki =
c2ε

cε

c2
ku

2
f εi = ck

u3
f

h
νt,i = 0.19κufh (2.84)

where the values of ck and cε depend on the version of the k−ε model used. Notice that the values

given by Equations 2.83 and 2.84 refer to the total turbulent energy and dissipation values (2D +

3D).

Limiter to the production of turbulent kinetic energy

It is well known that Boussinesq assumption does not work well under some flow conditions like

swirling flow, strong adverse pressure gradients, or near stagnation points. The main cause of these

problems is that the eddy viscosity is assumed to be isotropic.

In stagnation points the production of turbulent kinetic energy is overpredicted by the k −
ε model, which gives much larger values of k than the measured ones. This behaviour can be

easily explained considering the modelling of the turbulent energy production in the eddy viscosity

models. When an impinging jet approaches a wall (Figure 2.2) the sign of the main velocity

gradients are:
∂U

∂x
< 0

∂V

∂y
> 0 (2.85)

Considering that these ones are the largest velocity gradients, the real production of turbulent

kinetic energy is given by:

P real
k ≈ −u′2∂U

∂x︸ ︷︷ ︸
Positive

−v′2∂V

∂y︸ ︷︷ ︸
Negative

(2.86)
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Figure 2.2: Impinging jet.

The positive production of u′2 in Equation 2.86 balances partially the negative production of

v′2. If the Boussinesq assumption is used in Equation 2.86 to model the Reynolds stresses, a much

larger production is predicted:

PBoussinesq
k ≈ 2νt

⎡
⎢⎢⎣
(

∂U

∂x

)2

︸ ︷︷ ︸
Positive

+

(
∂V

∂y

)2

︸ ︷︷ ︸
Positive

⎤
⎥⎥⎦ >> 0 (2.87)

For this reason, a limiter in the production term is introduced in almost all the eddy viscosity

models in order to avoid too large values of the turbulent energy near stagnation points. Menter

[88] limits the ratio between the production and dissipation of turbulence as:

P = min (Pk, clε) (2.88)

where cl is a constant which takes a value between 10 and 20. Although limiter 2.88 is a rough

estimation which does not imply a good modelling of the stagnation region, it can improve the

numerical results, avoiding an extremely large turbulence level which may propagate and affect

the solution in the whole numerical domain.

In this thesis, the turbulent production limiter has been applied independently to the horizontal

shear production and to the bed friction production as:

Pk = min (Pk, clε) (2.89)

Pkv = min (Pkv, clε)

with a value of cl = 10. The limit imposed in the bed friction production is specially suitable for

problems with wet-dry fronts. The term Pkv can take very large values when the water depth is

very small. In that case, the second limiter in Equation 2.89 avoids instabilities in the solution, and

allows using smaller values of the wet-dry tolerance parameter (see section 3.9).
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Realizability in the eddy viscosity models

An important drawback to Boussinesq assumption is that it can predict negative values of the

normal Reynolds stresses, specially in stagnation regions, as it is pointed out by Durbin in [45].

In order to avoid negative normal stresses a constraint should be used in the eddy viscosity value.

This procedure also helps to avoid the excessive turbulent production near stagnation regions.

Using Boussinesq assumption, the normal stress u′2 is given by:

u′2 =
2

3
k − 2νt

∂U

∂x
(2.90)

If the turbulence model predicts too large values of νt, the normal stress u′2 may become

negative. From Equation 2.90, the maximum value of νt which still gives a positive value of u′2 is:

νt <
k

3
∂U

∂x

(2.91)

At any given point, the maximum value of
∂U

∂x
occurs in the principal axis of the mean strain

tensor. Hence, it is in those axis where constraint 2.91 should be imposed. It can be shown [45]

that in 3D flow the constraint over the eddy viscosity which assures that all the normal turbulent

stresses remain positive is given by:

νt <
k

3

(
3

2sijsij

)1/2

(2.92)

For 2D flow the constraint is slightly different:

νt <
k

3

(
2

SijSij

)1/2

(2.93)

The limiter given by Equation 2.93 has been used in all the k − ε models presented in this

section.

2.5 A depth averaged algebraic stress model

The general algebraic stress models (ASM) have been presented in section 1.3.3. Even though

they seem simpler than the Reynolds Stress Turbulence Models, they are usually more unstable,

specially in 3D flow computations. This is due to the highly non-linear algebraic expressions

used in ASM in order to evaluate the Reynolds stresses. The stability of the model is increased

if explicit rather than implicit expressions are used to compute the turbulent stresses [34]. In this
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section an explicit depth averaged ASM which accounts for the turbulence production due to bed

friction is proposed. The model has been used in all the computations done in this thesis, showing

a numerical stability similar to the k − ε model.

2.5.1 Algebraic stresses in 2D shallow flows

Only three Reynolds stresses (u′2, u′v′ and v′2) appear in the depth averaged shallow water equa-

tions. The production term for each Reynolds stress will be split into an horizontal 2D production

(Puu,H , Pvv,H , Puv,H) and a vertical production due to the bed friction (Puu,V , Pvv,V , Puv,V ). As-

suming that the vertical velocity is much smaller than the horizontal one, the expressions for each

production term are given by:

Puu = Puu,H + Puu,V = −2u′2 ∂U

∂x
− 2u′v′∂U

∂y
+ Puu,V (2.94)

Pvv = Pvv,H + Pvv,V = −2u′v′∂V

∂x
− 2v′2 ∂V

∂y
+ Pvv,V

Pww = 0

Puv = Puv,H + Puv,V = −u′2 ∂V

∂x
− u′v′

(
∂U

∂x
+

∂V

∂y

)
− v′2∂U

∂y
+ Puv,V

Since the vertical velocity is assumed to be negligible, the production of w′2 is zero (Pww = 0).

The evaluation of the terms Puu,V , Pvv,V , Puv,V , which account for the production due to vertical

shear, will be treated later on in this section. Instead of using the Boussinesq eddy viscosity

approximation, in the ASM the production of turbulent kinetic energy is computed directly from

the Reynolds stresses as:

Pk =
Puu + Pvv + Pww

2
(2.95)

= −u′2∂U

∂x
− u′v′

(
∂U

∂y
+

∂V

∂x

)
− v′2∂V

∂y
+

Puu,V + Pvv,V

2

Introducing Equations 2.94 and 2.95 into the algebraic expressions for the Reynolds stresses (Equa-

tion 1.28) yields:

u′v′ =
k

ε

(1 − c2)

c11

(
−u′2 ∂V

∂x
− v′2∂U

∂y
− u′v′∂U

∂x
− u′v′∂V

∂y
+ Puv,V

)
(2.96)

u′2 =
2

3
k +

k

ε

(1 − c2)

c11

(
−4

3
u′2∂U

∂x
− 4

3
u′v′∂U

∂y
+

2

3
v′2∂V

∂y
+

2

3
u′v′∂V

∂x
+

2

3
Puu,V − 1

3
Pvv,V

)

v′2 =
2

3
k +

k

ε

(1 − c2)

c11

(
−4

3
v′2∂V

∂y
− 4

3
u′v′∂V

∂x
+

2

3
u′2∂U

∂x
+

2

3
u′v′∂U

∂y
+

2

3
Pvv,V − 1

3
Puu,V

)
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with the constants:

c1 = 1.8 c2 = 0.6 c11 = c1 +
Pk

ε
− 1 (2.97)

The system of equations 2.105 can be written in matrix form as:

⎛
⎜⎝ u′2

v′2

u′v′

⎞
⎟⎠ =

1 − c2

c11

k

ε

⎛
⎜⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠
⎛
⎜⎝ u′2

v′2

u′v′

⎞
⎟⎠+

⎛
⎜⎝ b1

b2

b3

⎞
⎟⎠ (2.98)

with the coefficients aij and bi equal to:

a11 = −4

3

∂U

∂x
a12 =

2

3

∂V

∂y
a13 = −4

3

∂U

∂y
+

2

3

∂V

∂x

a21 =
2

3

∂U

∂x
a22 = −4

3

∂V

∂y
a23 = −4

3

∂V

∂x
+

2

3

∂U

∂y

a31 = −∂V

∂x
a32 = −∂U

∂y
a33 = −

(
∂U

∂x
+

∂V

∂y

)
(2.99)

b1 =
2

3
k +

k

ε

(1 − c2)

c11

(
2

3
Puu,V − 1

3
Pvv,V

)
(2.100)

b2 =
2

3
k +

k

ε

(1 − c2)

c11

(
2

3
Pvv,V − 1

3
Puu,V

)

b3 =
k

ε

(1 − c2)

c11

Puv,V

After simple algebraic manipulation, the system of equations 2.98 can be expressed as:

[
c11I − (1 − c2)

k

ε
A

]⎛⎜⎝ u′2

v′2

u′v′

⎞
⎟⎠ = c11b (2.101)

where A is a matrix whose elements are given by the expressions 2.99, and b is the vector given

by expressions 2.100. The coefficient c11 is given by Equation 2.97. At this point two possibili-

ties arise when computing the turbulent kinetic energy production Pk in Equation 2.97. The first

option is to compute Pk with Equation 2.95. If this is done the system of equations 2.101 is non-

linear, and an iterative procedure is needed to solve it. This leads to a more unstable numerical

scheme, because the coupling between Reynolds stresses in very strong. The second possibility is
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to compute Pk using the eddy viscosity assumption as:

P νt
k = 2νt

[(
∂U

∂x

)2

+
1

2

(
∂U

∂y
+

∂V

∂x

)2

+

(
∂V

∂y

)2
]

+ Pkv (2.102)

with the eddy viscosity νt computed from the k − ε model. With this choice, the system of equa-

tions 2.101 can be solved exactly without iterating, improving in this way the convergence of the

numerical scheme. From now on it will be assumed that the turbulent kinetic energy production

term in the coefficient c11 (Equation 2.97) is computed from Equation 2.102. The system of equa-

tions 2.101 can be written in tensorial form as:

mijrj = c11bi (2.103)

where rj (j = 1, 3) are the horizontal Reynolds stresses (u′2, v′2, u′v′), and the tensor mij is equal

to:

mij = c11δij − (1 − c2)
k

ε
aij (2.104)

The Reynolds stresses are obtained after solving the system of equations 2.103. It should be

remarked that even if the Reynolds stresses u′w′, v′w′ and w′2 do not appear in the depth averaged

shallow water equations, that does not mean that their value is assumed to be zero. These turbulent

stresses can be evaluated from the general Equation 1.28 in a similar way as it has been done in

this section for the horizontal stresses:

u′w′ =
k

ε

(1 − c2)

c11

(
−u′w′∂U

∂x
− v′w′∂U

∂y
+ Puw,V

)
(2.105)

v′w′ =
k

ε

(1 − c2)

c11

(
−u′w′∂V

∂x
− v′w′∂V

∂y
+ Pvw,V

)

w′2 =
2

3
k +

k

ε

(1 − c2)

c11

(
+

2

3
u′2∂U

∂x
+

2

3
u′v′∂U

∂y
+

2

3
u′v′∂V

∂x
+

2

3
v′2∂V

∂y
− 1

3
Puu,V − 1

3
Pvv,V

)

2.5.2 Estimation of the vertical production due to bed friction

The only thing which remains to specify in the present model is the evaluation of the vertical

production terms due to bed friction (Puu,V , Pvv,V , Puv,V ). The vertical production of Reynolds

stresses in Equation 2.94 is given by:

Puu,V = −2u′w′∂u

∂z
Pvv,V = −2v′w′∂v

∂z
Pww,V = 0

Puv,V = −u′w′∂v

∂z
− v′w′∂u

∂z
Puw,V = −w′2 ∂u

∂z
Pvw,V = −w′2 ∂v

∂z

(2.106)
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Since the production of w′2 is zero, all the generation of turbulent energy is distributed on the

horizontal Reynolds stresses u′2 and v′2. Hence, the vertical production of k is given by:

Pkv =
Puu,V + Pvv,V

2
(2.107)

It should be noticed that even if the production of w′2 is zero, this does not mean that its value

is zero, since the algebraic expressions 1.28 account for pressure-strain distribution between the

normal stresses.

In order to approximate the three vertical production terms (Puu,V , Pvv,V , Puv,V ), uniform chan-

nel flow conditions will be assumed. Under these flow conditions the vertical velocity, as well as

the horizontal velocity gradients, are zero (w = 0,
∂

∂x
=

∂

∂y
= 0), and all the production of

turbulence is due to vertical shear created by bed friction. A horizontal rotation of the reference

coordinate system will be considered, in such a way that in the new coordinate system the trans-

verse velocity is zero (v′ = 0). The relation between the horizontal velocities in both coordinate

systems is given by a horizontal rotation of α degrees as:

⎛
⎜⎝ u

v

w

⎞
⎟⎠ = NT

⎛
⎜⎝ u′

v′

w′

⎞
⎟⎠ (2.108)

where NT is the transposed of the rotation matrix N:

N =

⎛
⎜⎝ cos α − sin α 0

sinα cos α 0

0 0 1

⎞
⎟⎠ (2.109)

In a similar way, the relation between the turbulent stresses is obtained by a horizontal rotation of

the Reynolds stress tensor as:

T = NTT′N tij = nkit
′
klnlj (2.110)

where T and T′ are the Reynolds stress tensors in both coordinate systems:

T =

⎛
⎜⎝ t11 t12 t13

t21 t22 t23

t31 t32 t33

⎞
⎟⎠ =

⎛
⎜⎝ u′2 u′v′ u′w′

u′v′ v′2 v′w′

u′w′ v′w′ w′2

⎞
⎟⎠ (2.111)

The main property of the new reference system is that the transverse velocity vanishes (v ′ = 0),
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and as a consequence the turbulent stress t′23 also vanishes:

t′23 =
k

ε

1 − c2

c11

(
−w′2 ∂v′

∂z

)
= 0 (2.112)

Considering this property, the vertical production of u′2 can be computed as:

Puu,V = −2t13
∂u

∂z
= −2 (cos α, sinα, 0)T′

⎛
⎜⎝ 0

0

1

⎞
⎟⎠(

∂u′

∂z
cos α +

∂v′

∂z
sin α

)
(2.113)

= −2 (cos α, sinα, 0)

⎛
⎜⎝ t′13

t′23
t′33

⎞
⎟⎠ ∂u′

∂z
cos α

= −2t′13
∂u′

∂z
cos2 α

In a similar way, the vertical productions of v′2 and u′v′ are obtained as:

Pvv,V = −2t23
∂v

∂z
= −2t′13

∂u′

∂z
sin2 α (2.114)

Puv,V = −t13
∂v

∂z
− t23

∂u

∂z
= 2t′13

∂u′

∂z
sinα cos α

From Equations 2.107, 2.113 and 2.114, the vertical production of turbulent kinetic energy is

equal to:

Pkv =
Puu,V + Pvv,V

2
= −t′13

∂u′

∂z
(2.115)

Using Equation 2.115 in Equations 2.113 and 2.114 yields:

Puu,V = 2Pkv cos2 α (2.116)

Pvv,V = 2Pkv sin2 α

Puv,V = −2Pkv sin α cos α

The production of turbulent kinetic energy due to bed friction will be approximated for uniform

channel flow in the same way as it has been done in section 2.4.5:

Pkv =
|U|u2

f

h
(2.117)
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Finally the vertical production terms are evaluated as:

Puu,V = 2
u2

fq
2
x

h3|U| Pvv,V = 2
u2

fq
2
y

h3|U| Puv,V = −2
u2

fqxqy

h3|U| (2.118)

2.5.3 Realizability condition in the ASM

In section 2.4.5 a realizability condition over the eddy viscosity was presented in order to avoid the

prediction of negative turbulent stresses by the eddy viscosity models. With the ASM a realizability

condition is also needed, since there is nothing in the equations of the model which assures that

the normal Reynolds stresses will remain positive. Hence, the following restrictions should be

imposed in the model:

u′2 ≥ 0 v′2 ≥ 0 u′2 + v′2 ≤ 2k (2.119)

The third condition in Equation 2.119 assures that the vertical normal stress w′2 remains pos-

itive, and avoids excessively large values of the horizontal normal stresses. If any of the normal

stresses is negative its value is set to zero. At the same time, in order to keep constant the total

turbulent kinetic energy, it is necessary to subtract from the other normal stresses the same amount

of energy. This is done, for the stress u′2, in the following way:

If u′2 = −a2 < 0 then

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′2 = 0

v′2 = v′2 − a2 v′2

v′2 + w′2

w′2 = w′2 − a2 w′2

v′2 + w′2

(2.120)

It is straightforward to show that using the expressions 2.120 the turbulent kinetic energy is kept

constant after imposing the realizability condition. A simple way to implement the realizability

condition in the numerical solver is to define the following ratios:

Ru =
2k

2k − u′2 Rv =
2k

2k − v′2 Rw =
2k

2k − w′2 (2.121)

and to recompute the Reynolds stresses as:

u′2 = max{0, min(u′2, Rvu′2, Rwu′2)}
v′2 = max{0, min(v′2, Ruv′2, Rwv′2)} (2.122)
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2.5.4 Uniform channel flow

By uniform channel flow we consider the flow in the centre region of a infinitely wide rectilinear

channel with constant bed slope. The depth averaged velocity field is given by:

U = cte V = 0
∂

∂x
= 0

∂

∂y
= 0 (2.123)

Under these flow conditions the vertical production of Reynolds stresses is given by:

Puu,V = 2Pkv Pvv,V = 0 Puv,V = 0 Pkv =
|U |u2

f

h
(2.124)

In uniform channel flow the turbulent kinetic energy equation reduces to:

Pkv = ε (2.125)

and thus, from Equation 2.97, c11 = c1. Since all the spatial derivatives vanish, the matrix A

(Equation 2.99) is an empty matrix, and the solution of the system of equations 2.101 is given by:

u′2 =
2

3
k +

k

ε

(1 − c2)

c1

4

3
Pkv (2.126)

v′2 =
2

3
k − k

ε

(1 − c2)

c1

2

3
Pkv

u′v′ = 0

As it should be expected, the largest turbulent stress is u′2. If the Boussinesq assumption was

used, the three normal turbulent stresses would be equal. It should be noticed that the realizability

condition is needed in order to avoid negative values of v′2 when the vertical production of turbulent

energy is too high.

2.5.5 Boundary layer flow

Near the walls of a channel, the main gradients occur in the normal direction to the wall. If the

wall is long enough and the flow is fully developed, the flow field can be approximated by:

U = U(y) V = 0
∂

∂x
= 0 (2.127)

where U is the velocity component parallel to the wall, V is the velocity normal to the wall, x

is the longitudinal direction and y is the normal direction to the wall. Under these flow condi-

tions the vertical turbulence production terms are given, as well as in uniform channel flow, by
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Equation 2.124. In this case the matrix M and the vector b reduce to:

M =

⎛
⎜⎜⎜⎜⎜⎝

c11 0 (1 − c2)
k

ε

4

3

∂U

∂y

0 c11 −(1 − c2)
k

ε

2

3

∂U

∂y

0 (1 − c2)
k

ε

∂U

∂y
c11

⎞
⎟⎟⎟⎟⎟⎠ b =

⎛
⎜⎜⎜⎜⎝

2

3
k +

k

ε

(1 − c2)

c11

4

3
Pkv

2

3
k − k

ε

(1 − c2)

c11

1

3
Pkv

0

⎞
⎟⎟⎟⎟⎠ (2.128)

and the Reynolds stresses predicted by the model for shallow water boundary layer flow are:

u′2 =
c3
11

|M|b1 +
c11

|M|(1 − c2)
2k2

ε2

2

3

(
∂U

∂y

)2

b1 +
c11

|M|(1 − c2)
2k2

ε2

4

3

(
∂U

∂y

)2

b2 (2.129)

v′2 =
c3
11

|M|b2

u′v′ = − c2
11

|M|(1 − c2)
k

ε

∂U

∂y
b2

Again, considering that b1 > b2, the largest normal turbulent stress is u′2. If the Boussinesq

assumption was used, all the normal turbulent stresses would be equal.
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Chapter 3

Numerical solver

3.1 Introduction

The finite volume method is probably the most commonly used numerical method in Compu-

tational Fluid Dynamics. The fact of using a conservative formulation, as well as the intuitive

physical interpretation of the method, makes it adequate for solving differential equations for con-

servation laws, as it is the case in fluid dynamics.

In this chapter, after a brief presentation of the finite volume method, an unstructured finite

volume solver for the depth averaged shallow water and k−ε equations is presented. The schemes

used, as well as their implementation in the numerical code are described in detail.

The solver is up to second order accurate in space and time. The first order upwind schemes of

van Leer and Roe, as well as their second order extension, are used to discretise the convective flux

in the shallow water equations. Both a centred and an upwind discretisation of the source terms

have been implemented in the solver. Nevertheless, in all the practical applications an upwind

discretisation of the bed slope term, and a centred discretisation of the diffusion term and bed

friction terms have been used. A specific treatment of the wet-dry fronts is included in the solver,

in order to be able to deal with the modelling of flooding and drying processes.

3.2 Numerical methods for the 2D shallow water equations

Several numerical methods exist for solving transport equations which involve convection and

diffusion processes. An exhaustive review of all them is out of the scope of this brief introduc-

tion. Some of them are the finite volume, the finite element and the finite difference methods,

the boundary elements method, the Galerkin-Discontinuous method and the Lagrangian particle

method. From all them, the most used nowadays in fluid dynamics are the finite volume and the

finite element methods. In order to illustrate briefly both methods, we will consider the scalar
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equation f(u; x, y) = 0 defined over a 2D domain, where u(x, y) is the unknown variable. Both

finite element and finite volume can be considered as particular cases of the weak problem given

by: ∫
D

f(u; x, y)wi(x, y) dA = 0 i = 1, n (3.1)

where D is the spatial domain, and wi(x, y) are the weight functions.

The finite element method discretises the domain in nodes and elements, and uses a decompo-

sition of the unknown variable u(x, y) in shape functions φi(x, y) defined locally for each node:

u(x, y) =

n∑
i=1

uiφi(x, y) (3.2)

where ui is the value of u(x, y) at each discrete node. If Equation 3.2 is inserted into Equation 3.1,

a system of n equations with n unknowns ui (i = 1, n) is obtained. Several formulations appear

depending on the definition of both, the shape and the weight functions. For example, in the

Galerkin methods the weight functions are equal to the shape functions. A complete description of

the finite element method is given by Zienkiewicz [156], who is one of the first developers of the

method. A description of the method applied to turbulent flows can be found in [48].

The formulation of the finite volume method can also be obtained from Equation 3.1, with a

piecewise constant definition of the weight functions. The spatial domain is discretised in n cells

Ci, or control volumes, where the value of the weight functions is defined as:

wi(x, y) =

⎧⎨
⎩1 if (x, y) ∈ Ci

0 otherwise
(3.3)

This formulation is specially suitable for conservation laws, in which the function f(u; x, y)

can be expressed as:

f(u; x, y) = ∇F(u; x, y) − G(u; x, y) (3.4)

where F(u; x, y) is a vector which accounts for the convective flux in each of the spatial directions,

and G(u; x, y) includes any other terms. Introducing Equation 3.4 and the weight functions defined

by Equation 3.3 into Equation 3.1, and applying the Gauss theorem, gives the integral form of the

equation for the cell Ci:∫
Li

F(u; x, y)n dL =

∫
Ci

G(u; x, y) dA i = 1, n (3.5)

where Li is the boundary of the cell Ci, and n is the outward normal vector to Li. This is one

of the biggest differences between finite volume and finite element methods. Finite volume works

with the flux function F(u; x, y) in order to establish the conservation of mass and momentum over
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each control volume Ci. For this reason it is a specially suitable method for solving conservation

laws.

3.3 Finite volume methods for solving the 2D shallow water

equations

As it has been said, the finite volume method is very suitable for solving problems involving

conservation laws. For that reason, it is the method which has been used in the numerical solver

developed in this thesis. Before presenting the specific schemes which have been implemented in

the solver, a brief classification of the numerical schemes which are often used in finite volume

methods is done in this section.

The main problem when solving a convection-diffusion equation is that a centred discreti-

sation of the convection terms may give unstable schemes, the stability of the numerical method

depending on the ratio between diffusive and convective forces. If diffusion dominates, the centred

scheme is stable, but if convection is predominant, which is often the case, a centred discretisation

is unstable. It should be noticed that the pure convection equation is unconditionally and intrin-

sically unstable, and thus, regardless of the numerical method used (finite volume, finite element,

finite differences, ...), some kind of stabilisation technique is always necessary.

The most common stabilisation methods are the upwind schemes and the centred schemes

with artificial diffusion. Both kind of methods can be reduced to the principle of adding an ar-

tificial diffusion term of enough magnitude to stabilise the convection term. Some well known

centred schemes with artificial viscosity are the first order Lax-Friedrichs scheme and the second

order MacCormack scheme. A family of upwind schemes widely used in the solution of hyper-

bolic conservation laws, as the shallow water equations, are the Godunov’s methods, which solve

or approximate a 1D Riemann problem at each volume face [133]. Briefly, a Riemann problem

consists in solving a conservation equation with an initial condition given by two discontinuous

constant states. In the finite volume case, each state depends on the solution in two adjacent con-

trol volumes. Two well known Godunov’s upwind methods are the Roe’s and Van Leer’s schemes.

The Godunov’s schemes are very suitable for capturing shocks [134]. A detailed description of

Godunov’s methods is given by Toro [134] and Leveque [80, 79]. An attempt to improve the

Godunov’s methods is proposed by García-Navarro et al. [50], who propose a genuinely multidi-

mensional upwinding method instead of solving a 1D problem in the normal direction to the cell

faces.

The stabilisation procedure introduces a non-physical diffusion in the original equations. In

order to minimise the error introduced in the numerical solution by this artificial diffusion, upwind

discretisations of the source terms have been developed and used by several researchers [144, 51],
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and well-balanced properties of the numerical schemes have been defined [101, 23].

Another characteristic of the numerical scheme which is common to any numerical method

is the order of accuracy of the spatial and time discretisations. Special care should be taken in

the stabilised methods when defining the accuracy of the scheme, due to the introduction of an

artificial diffusion term which may modify the global order of accuracy.

Regarding the time discretisation, the numerical method may be explicit, implicit or semi-

implicit. Explicit schemes are often used in time marching problems in which the time scales

to be resolved are small, and thus, the CFL stability condition is not a great restriction. Fully

implicit methods are rarely used in computational fluid dynamics, specially with high order upwind

schemes, since the computational cost of solving a non-linear system at each time step is not worth.

Alternatively, linearised semi-implicit methods may be used, where a linear system is solved at

each time step. A simpler implementation is to implicit only the main diagonal of the coefficients

matrix. In this way, it is not necessary to solve any system of equations at each time step, and at

the same time the CFL restriction of the explicit scheme is relaxed.

Any of the previous numerical schemes applies to both structured and unstructured meshes.

However, the numerical implementation is simpler in structured meshes, specially if a high order

scheme is used. In structured meshes it is usual to find spatial discretisations up to third order

accurate or even higher, while schemes higher than second order accurate are seldom found in

unstructured meshes. Unstructured meshes can be easily adapted to complex geometries. This is

a great advantage in environmental hydraulic engineering, where the complexity of the bathimetry

and boundaries makes it worth to use a non-structured grid.

3.4 The finite volume method

3.4.1 Discretisation of the convection-diffusion equation

The convection-diffusion equation for a scalar variable w can be written in conservative form as:

∂w

∂t
+

∂Fk

∂xk

(w) =
∂

∂xk

(
ν

∂w

∂xk

)
+ G(x, w) (3.6)

where Fk(w) is the k component of the convective flux (which is assumed here to depend only on

the variable w), ν is the diffusivity coefficient, and G(xk, w) accounts for the source terms, which

in general can depend on the spatial coordinates as well as on the variable w. The convection-

diffusion equation can also be written in non-conservative form as:

∂w

∂t
+ ck(w)

∂w

∂xk

=
∂

∂xk

(
ν

∂w

∂xk

)
+ G′(x, w) (3.7)
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where ck(w) is the convective velocity in the k direction (Fk = ckw). In general, from a numerical

point of view, it is preferred to work with the conservative form of the equations. It is straightfor-

ward to pass from the non-conservative form to the conservative form by introducing an additional

source term. Equation 3.7 can be rewritten in conservative form as:

∂w

∂t
+

∂

∂xk

(ckw) =
∂

∂xk

(
ν

∂w

∂xk

)
+ w

∂ck

∂xk

+ G′ (3.8)

Identifying terms in Equations 3.6 and 3.8 yields:

G = G′ + w
∂ck

∂xk

(3.9)

From now on, the conservative formulation will be used in order to illustrate the finite volume

method. The time discretisation of Equation 3.6 reads:

wn+1 − wn

Δt
+

∂Fk

∂xk

=
∂

∂xk

(
ν

∂w

∂xk

)
+ G (3.10)

where wn is the value of the conservative variables at time tn. The convection and source terms

may be evaluated at time tn (first order explicit scheme), tn+1 (first order implicit scheme), tn+1/2

(second order implicit scheme), or any other intermediate time.

The spatial domain is discretised in grid cells (or intervals in one dimension) with an arbitrary

geometry. Each cell is represented by a node. Integration of Equation 3.10 over a cell Ci gives:

∫
Ci

wn+1 − wn

Δt
dA +

∫
Ci

∂Fk

∂xk

dA =

∫
Ci

∂

∂xk

(
ν

∂w

∂xk

)
dA +

∫
Ci

GdA (3.11)

Applying the Gauss theorem to the convective and diffusive flux integrals in Equation 3.11

yields:

Ai
wn+1

i − wn
i

Δt
+

∫
Li

Fkñk dL =

∫
Li

ν
∂w

∂xk

ñk dL +

∫
Ci

GdA (3.12)

where wn
i is the mean value of w in the cell Ci at the time tn, Li is the boundary of the cell Ci, and

ñk (with k = 1, 2 in 2D) is the outward normal unit vector to the boundary Li. In order to evaluate

the second term in Equation 3.12, the integral of the normal flux Fkñk over the cell boundary is

computed as a sum of integrals over the cell faces Lij:∫
Li

Fkñk dL =
∑
j∈Ki

∫
Lij

FkñkdL (3.13)

where Lij is the common face to the cells Ci and Cj , and Ki accounts for all the cells which

share at least one face with the cell Ci. The main difference between finite volume schemes lies
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in the way in which the flux over the cell faces is evaluated. The evaluation of the discrete flux

brings about concepts such as: centred and upwind schemes, first and second order accuracy, TVD

schemes, numerical diffusion, . . . . A detailed description of several schemes for computing the

numerical flux in the shallow water equations can be found in [134, 133].

3.4.2 Upwind discretisation versus centred discretisation

As it has been said, if a centred discretisation is used for both the flux and source terms in the

convection-diffusion equation, the numerical scheme may be unstable, and the numerical solution

may show non-physical oscillations. One possible way to obtain a stable scheme is to account for

the direction in which information propagates. This is the main idea which lies under the upwind

schemes, which can be easily understood if the 1D convection-diffusion equation is written in a

Lagrangian formulation as:
Dw

Dt
=

∂w

∂t
+ a

∂w

∂x
= G (3.14)

where the diffusion term has been included in G. In Equation 3.14, a is defined as:

∂F

∂x
= a

∂w

∂x
(3.15)

It should be noticed that a equals c (see Equation 3.7) only if the flux is an homogeneous

function, i.e. in the case that F =
∂F

∂w
w. From Equation 3.14, if the source term G is zero, the

conservative variable w is constant along the characteristic line (surface in 2D, or volume in 3D),

which (in 1D) is given by:

x = at (3.16)

The fact that information propagates along the characteristic lines should be taken into account

in the numerical scheme. Figure 3.1 shows the characteristic lines for the linear 1D convection

equation without source terms. When the source terms appear in the equation, w is not constant

along the characteristic lines any more, but the information continues being convected in the same

directions. The diffusion term is usually considered as a source term, but it may also be considered

as a flux term, in which case the characteristic lines would be modified.

Figure 3.1: Characteristic lines for the 1D linear convection equation.
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Upwind discretisation of the convective flux

One way to consider the direction in which information propagates is to evaluate the convection

term in the upwind cell face, instead of evaluating it in the cell centre. In 1D, this would lead to

the following scheme:
∂w

∂t

∣∣∣∣
i

+
∂F

∂x

∣∣∣∣
i∓1/2

= Gi (3.17)

where the convection term is evaluated at xi−1/2 or at xi+1/2 depending on the direction in which

information propagates, which in 1D is given by the sign of a, as defined in Equation 3.15. In

Equation 3.17, a centred discretisation of the source term has been used. The upwind discretisation

of the source terms will be treated later on in this chapter. Assuming an equidistant mesh, and using

the Taylor’s expansion of
∂F

∂x
over the point xi in Equation 3.17, gives:

∂w

∂t

∣∣∣∣
i

+
∂F

∂x

∣∣∣∣
i

− sgn(a)
Δx

2

∂2F

∂x2

∣∣∣∣
i

= Gi (3.18)

Using Equation 3.15, Equation 3.18 can be rewritten, omitting the subscript i, as:

∂w

∂t
+

∂

∂x

(
F − |a|Δx

2

∂w

∂x

)
= G (3.19)

Identifying terms in Equations 3.19 and 3.6, it is clear that the upwind discretisation of the

convection term is equivalent to introducing a diffusion term, with a numerical viscosity νn equal

to:

νn = |a|Δx

2
(3.20)

Equation 3.19 can be discretised in terms of a numerical flux φ [57] as:

wn+1
i − wn

i

Δt
Δx + φi+1/2 − φi−1/2 = GiΔx (3.21)

with the numerical flux φi+1/2 defined as:

φi+1/2 =
Fi + Fi+1

2︸ ︷︷ ︸
centred

− νn,i+1/2
wi+1 − wi

Δx︸ ︷︷ ︸
upwind

(3.22)

Upwind discretisation of the source term

It seems logical that, if an upwind discretisation of the convection term is done, the source term

should also be treated with an upwind scheme, mainly for two reasons: first, because the physical

perturbations introduced by the source term propagate along the characteristic lines, and thus,

this should be reflected by the discretisation scheme. Second, because, as it has been shown,
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when upwinding the convective flux a diffusion term is introduced in the original equation, which

generates a source of error in the solution. The upwind discretisation of the source term should

balance, at least in part, the numerical diffusion term, improving in this way the order of accuracy

of the scheme [47]. Using an upwind scheme for both the convection and the diffusion terms,

yields:
∂w

∂t

∣∣∣∣
i

+
∂F

∂x

∣∣∣∣
i∓1/2

= Gi∓1/2 (3.23)

In a similar way as it has been done with the convective flux, Equation 3.23 can be rewritten

using Taylor’s polynomial over the point xi as:

∂w

∂t

∣∣∣∣
i

+
∂F

∂x

∣∣∣∣
i

− sgn(a)
Δx

2

∂2F

∂x2

∣∣∣∣
i

= Gi − sgn(a)
Δx

2

∂G

∂x

∣∣∣∣
i

(3.24)

Using the numerical flux φ (Equation 3.22), the discretisation of Equation 3.24 gives:

wn+1
i − wn

i

Δt
Δx + φi+1/2 − φi−1/2 = G′

i (3.25)

with:

G′
i = Gi︸︷︷︸

centred

−1

2
sgn(ai+1/2)Gi+1/2 +

1

2
sgn(ai−1/2)Gi−1/2︸ ︷︷ ︸

upwind

(3.26)

The function sgn(a) in Equation 3.26 has been evaluated at each cell face in order to obtain a

conservative formulation of the upwind contribution. A conservative discretisation of the whole

source term can be obtained if the centred contribution in Equation 3.26 is evaluated as an arith-

metic average from the values at the cell faces, which yields:

G′
i =

1

2

(
1 − sgn(a)i+1/2

)
Gi+1/2 +

1

2

(
1 + sgn(a)i−1/2

)
Gi−1/2 (3.27)

from where it is clear that for positive values of a, G′
i = Gi−1/2, while for negative values of a,

G′
i = Gi+1/2.

3.4.3 Linear stability analysis for the 1D convection-diffusion equation

An important characteristic of any numerical scheme is its stability. Considering a linear 1D con-

vective flux given by F (w) = cw (where c is the constant convective velocity), and a constant

diffusivity coefficient ν, Equation 3.6 reads:

∂w

∂t
+ c

∂w

∂x
= ν

∂2w

∂x2
(3.28)
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Centred discretisation

If an explicit centred discretisation of all the terms in Equation 3.28 is done, the discrete equation

reads:

wn+1
j = wn

j − cΔt

2Δx
(wn

j+1 − wn
j−1) +

νΔt

(Δx)2
(wn

j+1 − 2wn
j + wn

j−1) (3.29)

Equation 3.29 can be written in general form as:

wn+1
j = ajw

n
j + aj−1w

n
j−1 + aj+1w

n
j+1 (3.30)

with the coefficients:

aj = 1 − 2νΔt

(Δx)2
aj−1 =

cΔt

2Δx
+

νΔt

(Δx)2
aj+1 = − cΔt

2Δx
+

νΔt

(Δx)2
(3.31)

In order to achieve numerical stability all the coefficients aj, aj−1, aj+1 must be positive. Hence,

from the coefficient aj+1, the following stability condition over the Peclet number (Pe) is obtained:

Pe =
cΔx

ν
< 2 (3.32)

Condition 3.32 is, in general, very restrictive over the spatial step Δx, and usually it is not

fulfilled due to the small values of ν in practical calculations. It should be noticed that for ν = 0

the scheme is unconditionally unstable. The fact of using an implicit scheme does not improve

the numerical stability, since the coefficient aj+1 remains negative if the Peclet condition is not

fulfilled.

Upwind discretisation of the convective flux

A way of obtaining a stable numerical scheme when the Peclet number is larger than 2, is to use an

upwind discretisation of the convection term. Considering a centred discretisation of the diffusion

term, the new numerical scheme is given by:

wn+1
j = wn

j − cΔt

Δx
(wn

j − wn
j−1) +

νΔt

(Δx)2
(wn

j+1 − 2wn
j + wn

j−1) (3.33)

where it has been assumed a positive convective velocity (c > 0). The new coefficients in the

general Equation 3.30 are:

aj = 1 − cΔt

Δx
− 2νΔt

(Δx)2
aj−1 =

cΔt

Δx
+

νΔt

(Δx)2
aj+1 =

νΔt

(Δx)2
(3.34)
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The new stability condition over the time step is given by:

Δt <
Δx

c +
2ν

Δx

CFL <
1

1 +
2ν

cΔx

(3.35)

The condition over the time step is more restrictive as the diffusivity coefficient ν increases.

For ν = 0 the Courant-Friedrich-Levy (CFL) condition is obtained [57].

As it has been shown in the previous section, the fact of using an upwind discretisation of the

convection term is equivalent to introduce a diffusion term with a numerical viscosity νn equal to:

νn =
cΔx

2
(3.36)

The artificial viscosity guaranties that the Peclet number is smaller than 2, which is the stability

condition for the convection-diffusion equation when a centred discretisation of all the terms is

done. The magnitude of the artificial viscosity depends on the numerical scheme used.

Upwind discretisation of the diffusive flux

If an upwind discretisation is used for both the convection and the diffusion terms, the discrete

convection-diffusion equation becomes:

wn+1
j = wn

j − cΔt

Δx
(wn

j − wn
j−1) +

νΔt

(2Δx)2
(wn

j+1 − wn
j − wn

j−1 + wn
j−2) (3.37)

Now the time step condition for numerical stability is:

Δt <
Δx

c +
ν

2Δx

CFL <
1

1 +
ν

2cΔx

(3.38)

which is somewhat less restrictive than condition 3.35, specially when the diffusivity coefficient ν

is high. However, in this case there is another stability condition which limits the spatial step:

Δx >
ν

2c
Pe >

1

2
(3.39)

Condition 3.39 is not really important because in the case it is not fulfilled (Pe < 1/2) the

centred scheme can be used for both, the convection and the diffusion terms.

Semi-implicit discretisation of the diffusive flux

No matter whether an upwind or centred discretisation of the diffusion term is done, if the dif-

fusivity coefficient becomes very large the stability condition over the time step becomes very
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restrictive. In order to relax the stability condition without additional computational cost, the main

diagonal of the diffusive flux can be implicit, giving the following scheme:(
1 +

2νΔt

(Δx)2

)
wn+1

j = wn
j − cΔt

Δx
(wn

j − wn
j−1) +

νΔt

(Δx)2
(wn

j+1 + wn
j−1) (3.40)

With this scheme the stability condition over the time step is the usual CFL condition:

Δt <
Δx

c
CFL < 1 (3.41)

3.5 Discretisation of the 2D shallow water equations

3.5.1 Discretisation of the spatial domain

Regarding to the discretisation of the spatial domain, the numerical meshes can be classified in

two main groups: structured and unstructured. While the latter ones are more suitable for complex

geometries, the former ones use simpler and usually higher order numerical algorithms.

Since the shallow water equations are often applied to environmental flow problems with very

complex geometries, as rivers and estuaries, it is usually preferred to use unstructured meshes,

which are easily adapted to uneven boundaries. On the other hand, more complex algorithms are

needed in order to achieve a high order accuracy in space. The numerical schemes for unstructured

meshes are usually at most second order accurate in space. In this thesis it has been decided to use

unstructured meshes with first and second order upwind schemes.

The main characteristic of unstructured meshes is that the control volumes can have any geo-

metric shape. There are several methodologies to build the numerical mesh. Most of them make

use of a previous triangulation of the computational domain (Figure 3.2). The most straightforward

approach is to use the original triangulation as the control volumes, and to place the cell nodes in

the barycentre of each triangle (triangle-type control volumes). A second possibility is to place the

nodes in the vertex of the triangles, and to build the control volumes using the medians of the orig-

inal triangles. These volumes are known as vertex-type control volumes. The main inconvenience

of this approach is that in irregular domains a boundary node may have associated two different

normal vectors, as it is pointed out by Dervieux and Desideri in [37].

We will use another kind of control volumes which were introduced by Bermúdez et al. [11]

in order to have always only one normal vector associated to each boundary node. The special

characteristic of these volumes is that the nodes are placed in the edges of the original triangula-

tion. For this reason they are called edge-type control volumes. This approach permits an easy

definition of the normal vector to the boundary faces in irregular geometries. It permits also an

easy implementation of the Dirichlet boundary conditions, since the nodes of the boundary cells
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(a) Original triangular mesh (b) Triangle-type volumes

(c) Vertex-type volumes (d) Edge-type volumes

Figure 3.2: Several methods for the generation of control volumes from a triangular mesh.

are placed in the boundary edge. The following steps and definitions are used when creating the

edge-type control volumes (Figure 3.3(a)):

• The mesh nodes are placed at the mid-point of the triangles edges.

• Each triangle is subdivided into 6 sub-triangles defined by the 3 medians.

• The cell Ci is formed by all the sub-triangles which have the node Ni as a vertex (4 sub-

triangles in the inner nodes and 2 sub-triangles in the boundary nodes).

• The cell face Lij is common to the cells Ci and Cj .

• The normal vector to the face Lij will be addressed as nij . It points from the node Ni to the

node Nj , and it has the same length as the face Lij . In the boundary faces it points outward

the domain. The unit normal vector will be addressed as ñij .

• The vector rij links the nodes Ni and Nj . The distance between these nodes (dij) is given by

its module (dij = |rij|). Notice that the vectors rij and nij do not necessarily have the same

direction.

• The distance d⊥,ij is defined as the projection of rij on to the normal direction to the face

(ñij), i.e. d⊥,ij = rij · ñij .
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iar(1,Lij) origin of the face (V)

iar(2,Lij) end of the face (B)

iar(3,Lij) node Ni

iar(4,Lij) node Nj

Table 3.1: Pointer definition for face Lij (see Figure 3.3(a)).

• Due to the way in which the control volumes are generated, the distance from the node Ni

to the face Lij is equal to
d⊥,ij

2
.

• The sub-cell Tij is defined as the sub-triangle NiV B (see Figure 3.3(a)). Its area is given by

ATij
=

|nij|d⊥,ij

4
.

• The ensemble of cells Cj which share one face with the cell Ci will be denoted by Ki.

The control volumes built in such a way have 4 faces except at the boundaries, where they have

only 3 faces. As we are dealing with unstructured meshes, a pointer system is needed in order

to store the information about the mesh topology. Since almost all quantities are computed by

looping over cell faces, a pointer containing the information on the faces (iar(1:4,Lij)) is defined

in Table 3.1.

(a) Control volume construction (b) Node classification

Figure 3.3: Definition of edge-type volumes and node classification.

In order to treat the open and wall boundaries the nodes are classified in (Figure 3.3(b)): inner

nodes (Ni), open boundary nodes (Nob), wall boundary nodes (Nw) and log-law nodes (Nlog). Each

log-law node has associated only one wall node, while each wall node can be associated to several

log-law nodes.

3.5.2 The 2D shallow water equations in conservative and vectorial form

The shallow water equations can be written either in conservative or non-conservative variables.

An interesting property of working with conservative variables is the ability to compute shocks in

the solution. This is very important if we consider that the solution of the shallow water equations
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contains often very steep gradients in the water depth, either in the shape of hydraulic jumps or

due to discontinuities in the bed elevation.

The depth averaged shallow water equations in conservative form read:

∂h

∂t
+

∂qj

∂xj

= 0 (3.42)

∂qi

∂t
+

∂

∂xj

(
qiqj

h
+

gh2

2
δij

)
= −gh

∂zb

∂xi

− τb,i

ρ
+

∂

∂xj

(
hν

∂Ui

∂xj

)
− ∂

∂xj

(
h < u′

iu
′
j >

)
, i = 1, 2

where the conservative variables are the water depth h, and the unit discharges qi = hUi (i = 1, 2).

The bed elevation is given by zb, τb,i (i = 1, 2) is the bed friction, ν is the kinematic viscosity, and

< u′
iu

′
j > are the depth averaged horizontal Reynolds stresses. As it has been done in chapter 2,

the symbols <> will be omitted for the sake of clarity in the notation. In Equation 3.42 it has been

assumed that the Coriolis force and wind stress are negligible, and that the atmospheric pressure is

constant in all the domain.

If the Boussinesq assumption is used to model the Reynolds stresses, the diffusive source terms

(viscous and turbulent) can be written as:

∂

∂xj

(
hνe

∂Ui

∂xj

)
(3.43)

where νe is the effective viscosity, which is defined as the eddy viscosity (νt) plus the kinematic

viscosity (ν):

νe = νt + ν (3.44)

Equations 3.42 can be written in vectorial form as:

∂w

∂t
+

∂Fx

∂x
+

∂Fy

∂y
=

3∑
k=1

Gk (3.45)

w =

⎛
⎜⎝ h

qx

qy

⎞
⎟⎠ Fx =

⎛
⎜⎜⎜⎝

qx

q2
x

h
+

gh2

2qxqy

h

⎞
⎟⎟⎟⎠ Fy =

⎛
⎜⎜⎜⎝

qy
qxqy

h
q2
y

h
+

gh2

2

⎞
⎟⎟⎟⎠

The vectors Fx and Fy account for the physical flux in the x and y directions. The vectors

Gk (k = 1, 3), account respectively for the bed slope (G1), the bed friction (G2), and the turbulent
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and viscous diffusion (G3):

G1 =

⎛
⎜⎜⎜⎝

0

−gh
∂zb

∂x

−gh
∂zb

∂y

⎞
⎟⎟⎟⎠ G2 =

⎛
⎜⎜⎜⎝

0

−τb,x

ρ

−τb,y

ρ

⎞
⎟⎟⎟⎠ G3 =

⎛
⎜⎜⎜⎜⎝

0
∂

∂xj

(
νeh

∂Ux

∂xj

)
∂

∂xj

(
νeh

∂Uy

∂xj

)
⎞
⎟⎟⎟⎟⎠ (3.46)

The general expression for the bed friction τb,j is:

τb,j = ρcfUj|U| (3.47)

where cf is the bed friction coefficient and |U| is the module of the velocity vector. Several

expressions to evaluate cf have been presented in chapter 2.

3.5.3 Hyperbolic character of the 2D shallow water equations

In order to study the mathematical character of the shallow water equations, the eigenvalues of the

Jacobian matrix of the normal flux must be evaluated. In Equation 3.45 the vector fluxes Fx and

Fy have been defined, which account for the convective flux in the x and y directions respectively.

The total normal flux through a surface defined by the normal vector n = (nx, ny) is computed as:

Z = Fxnx + Fyny (3.48)

where Z is the total normal flux to the surface. The length of the normal vector n is the same as

the length of the surface. The Jacobian matrix of the normal flux (A) is given by:

A =
∂Z

∂w
= nx

∂Fx

∂w
+ ny

∂Fy

∂w
= (3.49)

=

⎛
⎜⎜⎜⎜⎜⎝

0 nx ny

nx

(
− q2

x

h2
+ gh

)
+ ny

(
−qxqy

h2

)
nx

2qx

h
+ ny

qy

h
ny

qx

h

nx

(
−qxqy

h2

)
+ ny

(
− q2

y

h2
+ gh

)
nx

qy

h
nx

qx

h
+ ny

2qy

h

⎞
⎟⎟⎟⎟⎟⎠

It is straightforward to show that the three eigenvalues of the matrix A are given by:

λ1 = nx
qx

h
+ ny

qy

h
λ2 = λ1 + c

√
n2

x + n2
y λ3 = λ1 − c

√
n2

x + n2
y (3.50)

where c =
√

gh is the wave celerity. For positive water depths (h > 0), the three eigenvalues

are real and different. In the limit case of zero water depth, the 3 eigenvalues are zero. Hence,
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the shallow water equations as defined by Equation 3.45 are an hyperbolic system of conservative

laws.

The eigenvectors of the Jacobian matrix A are given by:

v1 =

⎛
⎜⎝ 0

−ñy

ñx

⎞
⎟⎠ v2 =

⎛
⎜⎜⎝

1
qx

h
+ cñx

qy

h
+ cñy

⎞
⎟⎟⎠ v3 =

⎛
⎜⎜⎝

1
qx

h
− cñx

qy

h
− cñy

⎞
⎟⎟⎠ (3.51)

3.5.4 Discretisation of the equations

A finite volume solver with upwind discretisation in space has been used to solve Equation 3.45.

The solver is explicit in time except for the viscous diagonal, which might be treated either implic-

itly or explicitly.

Time discretisation

The first order explicit discretisation of Equation 3.45 reads:

wn+1 − wn

Δt
+

∂Fx

∂x
(wn) +

∂Fy

∂y
(wn) =

3∑
k=1

Gk
n (3.52)

where wn is the value of the conservative variables at time tn. The convective flux and source

terms are evaluated at time tn. The extension of the numerical scheme given by Equation 3.52

to second order in time is straightforward. Different time discretisations may be used. In the

numerical solver, the second order in time has been implemented as follows. First, an intermediate

state is computed at tn+1/2 with a first order scheme:

wn+1/2 = wn − Δt

2

(
∂Fx

∂x
(wn) +

∂Fy

∂y
(wn)

)
+

Δt

2

3∑
k=1

Gk
n (3.53)

With the new intermediate variables wn+1/2, the flux and source terms are evaluated at tn+1/2,

and Equation 3.52 is integrated over one complete time step.

wn+1 = wn − Δt

(
∂Fx

∂x
(wn+1/2) +

∂Fy

∂y
(wn+1/2)

)
+ Δt

3∑
k=1

Gk
n+1/2 (3.54)

The time step is limited by the CFL condition which, accordingly to the stability analysis

presented in section 3.4.3, has been implemented as:

Δti = CFL
di

|U|i +
√

ghi

(3.55)
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where di =
Ai

Pi

is the ratio between the area Ai and the perimeter Pi on each cell Ci, and |U|i is

the module of the velocity vector at the node Ni.

In steady problems condition 3.55 is imposed locally at every node, which means that the time

step varies between the different numerical cells in order to improve the convergence speed. In

unsteady problems the condition over the time step is imposed globally in all the spatial domain,

which means that the time step is the same in all the cells. In this case, in order to obtain global

stability, the global time step is equal to the minimum local time step:

Δtunsteady = min(Δti) (3.56)

The minimum time step can also be fixed directly by the user, but must always fulfil Equa-

tion 3.55.

Spatial discretisation

The integration of Equation 3.52 over a cell Ci gives:

∫
Ci

wn+1 − wn

Δt
dA +

∫
Ci

(
∂Fx

∂x
+

∂Fy

∂y

)
dA =

3∑
k=1

∫
Ci

Gk dA (3.57)

where the flux and source terms may be evaluated at tn or tn+1/2 depending on the order of accuracy

of the time integration scheme. Applying the Gauss theorem to the convective flux integral in

Equation 3.57 gives:

Ai
wn+1

i − wn
i

Δt
+

∫
Li

(Fxñx + Fyñy) dL =

3∑
k=1

∫
Ci

Gk dA (3.58)

where wn
i is the mean value of w in the cell Ci at the time tn, Li is the boundary of the cell Ci, and

ñ = (ñx, ñy) is the unit normal vector to Li. In order to evaluate the second term in Equation 3.58,

the integral of the flux over the cell boundary is computed as a sum of integrals over the cell faces

Lij , as: ∫
Li

(Fxñx + Fyñy) dL =
∑
j∈Ki

∫
Lij

(Fxñx + Fyñy) dL (3.59)

where Ki accounts for all the cells Cj which share one face with the cell Ci. The main difference

between numerical schemes lies on how the flux at the cell boundary is evaluated. The first order

van Leer’s and Roe’s schemes, as well as their second order extensions, have been implemented in

the numerical solver.
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3.5.5 Discretisation of the convective flux

The numerical schemes which have been implemented in the solver belong to the group of up-

wind methods known as Godunov’s methods, which either solve or approximate the solution of a

unidimensional Riemann problem at each cell face. A Riemann problem is defined by a set of con-

servation laws with a discontinuous initial state. The solution permits computing the flux through

the cell face. The exact solution of a Riemann problem needs an iterative procedure, which is

computationally expensive. For this reason, approximate solutions are generally preferred. In this

work the schemes of Roe and van Leer have been used. A detailed description of Riemann solvers

for fluid dynamics is given by Toro in [133].

In the first order upwind schemes the left and right states of the Riemann problem are given by

the value of the variables at the left and right nodes wi and wj . In order to approximate the real

flux F at the boundaries of the cell Ci, a numerical flux φ is defined, being the convective flux in

Equation 3.59 approximated as:∫
Lij

(Fxñx + Fyñy) dL ≈ φij(wi,wj,nij) (3.60)

The numerical flux φij depends on the value of the conservative variables at the nodes on each

side of the face, and on the normal vector to the face. It is computed at each cell face as:

φij(wi,wj,nij) =
Z(wi,nij) + Z(wj,nij)

2︸ ︷︷ ︸
centred

− 1

2
|Q(wi,wj,nij)|(wj − wi)︸ ︷︷ ︸

upwind

(3.61)

where the centred part is a second order approximation of the normal flux at the cell face, and

the upwind part gives stability to the scheme (and accounts for the direction in which information

propagates). Note that the definition of the normal flux Z (Equation 3.48) includes the length of

the cell face, which is equal to the module of the normal vector (|nij|).
The matrix Q is characteristic of each scheme. For the van Leer’s and Roe’s schemes it is

defined as the Jacobian matrix of the normal flux, evaluated at a mean state (w̃ij) between nodes

Ni and Nj:

Q(wi,wj,nij) = A (w̃ij,nij) (3.62)

where A is the Jacobian matrix of the normal flux, given by Equation 3.49. The matrix |Q| in

Equation 3.61 is obtained from Q as:

|Q| = X|D|X−1 (3.63)

where X is the matrix formed by the eigenvectors of Q, and |D| is a diagonal matrix formed by

the absolute values of the eigenvalues of Q. Considering the definition of Q in the schemes of van
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Leer and Roe, the matrices X,X−1 and |D| are given by:

|D| =

⎛
⎜⎝ |λ̃1| 0 0

0 |λ̃2| 0

0 0 |λ̃3|

⎞
⎟⎠ X =

⎛
⎜⎝ 0 1 1

−ñy Ũx + c̃ñx Ũx − c̃ñx

ñx Ũy + c̃ñy Ũy − c̃ñy

⎞
⎟⎠ (3.64)

X−1 =
1

2c̃

⎛
⎜⎝ 2c̃(Ũxñy − Ũyñx) −2c̃ñy 2c̃ñx

c̃ − Ũxñx − Ũyñy ñx ñy

c̃ + Ũxñx + Ũyñy −ñx −ñy

⎞
⎟⎠

where all the variables are evaluated at the mean state w̃ij , which is defined by (h̃, q̃x, q̃y, c̃). The

eigenvalues of Q are computed as:

λ̃1 = nxŨx + nyŨy λ̃2 = λ̃1 + c̃
√

n2
x + n2

y λ̃3 = λ̃1 − c̃
√

n2
x + n2

y (3.65)

The first order upwind van Leer’s scheme

In the first order upwind van Leer’s scheme [140] the mean state w̃ij is given by the arithmetic

average of wi and wj , as:

h̃ =
hi + hj

2
c̃ =

√
gh̃ q̃x =

qx,i + qx,j

2
q̃y =

qy,i + qy,j

2
(3.66)

The first order upwind Roe’s scheme

The scheme of Roe [118] solves an exact linearised Riemann problem at the cell interfaces. In

order to do so, the mean state of Roe (w̃Roe) is chosen in such a way that the following expression

is fulfilled:

Fj − Fi = A (w̃Roe) (wj − wi) (3.67)

It can be shown that, in order to verify Equation 3.67, the mean state of Roe is given by:

h̃ =
√

hihj c̃ =

√
g
hi + hj

2
Ũx =

√
hiUx,i +

√
hjUx,j√

hi +
√

hj

Ũy =

√
hiUy,i +

√
hjUy,j√

hi +
√

hj

(3.68)

and q̃x = h̃Ũx. Notice that in this case c̃ 	=
√

gh̃. As a consequence of fulfilling Equation 3.67,

Roe’s scheme has the property of computing exactly shocks when no source terms are present in

the equations, being in those cases superior to van Leer’s scheme.
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Second order extension of van Leer’s and Roe’s schemes

Both van Leer’s and Roe’s schemes are first order accurate in space, since a piecewise constant

distribution of the conservative variables is assumed when defining the Riemann’s problem at each

cell face. The approximate Riemann’s problem solution given by Equations 3.61, 3.66 and 3.68,

depends on the values of the conservative variables at the nodes Ni and Nj . A first order scheme

is not enough to compute accurately the velocity profiles, since it introduces too much numerical

diffusion.

In order to improve the accuracy of the scheme more nodes must be considered when com-

puting the numerical flux on the cell faces. In structured meshes it is easy to obtain third order of

accuracy or even more. On the other hand, in unstructured meshes more complex algorithms are

required in order to obtain more than second order accuracy, since it is difficult to identify which

cells should be used to approximate the cell boundary flux. Several schemes exist which permit

to obtain second order accuracy. The scheme implemented in the numerical solver is based on a

MUSCL (Monotonic Upstream Scheme for Conservation Laws) reconstruction of the conserva-

tive variables, using a slope limiter in order to control the total variation of the reconstructed field

(Total Variation Diminishing schemes [80]).

The extrapolation of the conservative variables from the nodes to the cell faces is done as:

wIj = wi + ∇wi
rij

2
(3.69)

wiJ = wj −∇wj
rij

2

where wIj is the extrapolated value of wi to the cell face Lij , wiJ is the extrapolated value of

wj to the cell face Lij , rij is the distance vector between the nodes Ni and Nj , and ∇w is an

approximation of the gradient of the conservative variables.

(a) Triangles used to compute the gradients. (b) Linear extrapolation from nodes to faces.

Figure 3.4: Extrapolation of the conservative variables from the cell nodes to the cell faces in the second

order scheme.

In order to keep the upwind character of the scheme, the gradient ∇wi is computed from the

values of w at the nodes Ni, Ni1, Ni2 (Figure 3.4). The way in which the gradient is computed is
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described in section 3.5.6. Figure 3.4 shows schematically how the extrapolated face values are

computed. In order to avoid under and over-shoots in regions with steep gradients, a limiter for the

values of ∇wi
rij

2
and ∇wj

rij

2
in Equation 3.69 must be applied. In order to do so, Equation 3.69

is rewritten as:

wIj = wi +
1

2
Δ∗

i wiJ = wj +
1

2
Δ∗

j (3.70)

where Δ∗
i and Δ∗

j are the limited slopes [134] at the nodes Ni and Nj , which in the solver are

computed as:

Δ∗
i =

⎧⎨
⎩max [ 0, min (β∇wirij, Δij) , min (∇wirij, βΔij)] if Δij > 0

min [ 0, max (β∇wirij, Δij) , max (∇wirij, βΔij)] if Δij < 0
(3.71)

with an analogous expression for Δ∗
j . In Equation (3.71), Δij = wj − wi. The limited slopes

computed from Equation (3.71) reproduce the Minmod limiter for β = 1 and the Superbee limiter

for β = 2 [134]. The Superbee limiter has been used in all the second order simulations in this

thesis, unless otherwise stated.

Finally, the extrapolated values wIj and wiJ are used in Equation 3.61 instead of wi and wj in

order to compute the numerical flux at the cell faces.

Regularisation of the eigenvalues

The numerical schemes of van Leer and Roe do not give the correct numerical flux at the cell faces

when any of the eigenvalues given by Equation 3.65 is zero. Harten [57] proposed that in these

situations the absolute value of the eigenvalues should be modified as:

|λ|r =

⎧⎨
⎩|λ| if |λ| > ε

λ2 + ε2

2ε
if |λ| ≤ ε

(3.72)

where ε is any small value. Although other possible regularisations of the eigenvalues exist,

Harten’s regularisation has been the one used in this thesis, since it has been widely used and

tested in many solvers providing very satisfactory results. In the numerical solver the value of ε

has been set locally at each cell face as εij = 0.1
√

ghij|nij|. Another possible definition of εij is

given by:

εij = max
[
0, λ̃ij − λi, λj − λ̃ij

]
(3.73)

where λ̃ij is the eigenvalue computed at the mean state between cells Ci and Cj (Equation 3.65),

and λi, λj are the values of the eigenvalues at the nodes Ni and Nj .

It should be remarked that only the absolute value of the eigenvalues is modified in the numer-

ical scheme, and therefore, it only affects the upwind part of the numerical flux in Equation 3.61.
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3.5.6 Estimation of the gradient in a triangular mesh

In the second order extension of the van Leer’s and Roe’s schemes it is necessary to compute

the gradient of the conservative variables (∇w) on the associated triangular mesh. In order

to do so, a shape function approach has been used. A transformation from real coordinates

(x, y) to local coordinates (χ, η) is done in each triangle (Figure 3.5) using the shape functions

N1(χ, η), N2(χ, η), N3(χ, η). In this way, any variable w can be expressed in local coordinates as:

w(χ, η) = w1N1(χ, η) + w2N2(χ, η) + w3N3(χ, η)

N1 = 1 − χ − η N2 = χ N3 = η
(3.74)

where w is any variable, w1, w2, w3 are the values of w at each vertex of the triangle, and N1, N2, N3

are the shape functions associated to each vertex.

Figure 3.5: Local transformation of coordinates for the evaluation of spatial derivatives.

Using Equation 3.74 to obtain the relation between real and local coordinates yields:(
x

y

)
=

(
x1

y1

)
+

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)(
χ

η

)
(3.75)

After some mathematical manipulation the gradient of w is obtained using expressions 3.74

and 3.75 as:

∂w

∂x
=

w1(y2 − y3) + w2(y3 − y1) − w3(y2 − y1)

(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)
(3.76)

∂w

∂y
=

w1(x3 − x2) − w2(x3 − x1) + w3(x2 − x1)

(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)

Equation 3.76 gives the gradient ∇w in the triangular mesh associated to the finite volume

mesh. When the gradient is needed at the nodes of the finite volume mesh, it is simply computed

as the average of the gradients in the two triangles to which the node belongs (Figure 3.6):

(∇w)i = 0.5

(
(∇w) �

ij1j2
+ (∇w) �

ij3j4

)
(3.77)
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Figure 3.6: Nodes which contribute to the evaluation of the spacial derivatives at node Ni.

3.5.7 Discretisation of the bed slope source term

Traditionally, a centred scheme is generally used to discretise the source terms, as they do not

present the stability problems which appear in the convective flux. However, after studying the

discretisation of the bed slope source term, Bermúdez and Vázquez [10] showed the importance

of using an upwind discretisation of that term in order to avoid non-physical oscillations in the

solution. They showed that, in order to obtain the exact solution for hydrostatic flow, given by

qx = qy = 0 and zs = h + zb = cte, it is necessary to discretise in a coherent manner the terms

gh
∂h

∂x
and gh

∂zb

∂x
. Therefore, if the former one is upwinded with the convective flux, the latter one

should also be upwinded. The upwind discretisation of the source terms has also been studied by

other researchers [101, 23, 47].

In order to avoid an excessive number of subindices in the notation, in this section the bed slope

term (G1 in Equation 3.46) will be addressed as S.

Centred discretisation of the bed slope source term

If a centred discretisation is used, the bed slope source term is approximated at each node Ni as:

Si =

⎛
⎜⎜⎜⎜⎝

0

−ghi
∂zb

∂x

∣∣∣∣
i

−ghi
∂zb

∂y

∣∣∣∣
i

⎞
⎟⎟⎟⎟⎠ (3.78)

The gradient of the bed elevation at the cell nodes is computed as the mean value of the gradi-

ents in the two triangles to which the node belongs (Equation 3.77). The evaluation of the gradient

in the triangular mesh is described in section 3.5.6. Other discretisations of the spatial gradients at

the nodes may be used.
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Upwind discretisation of the bed slope source term

One way in which the bed slope source term can be discretised in order to obtain the exact hydro-

static flow solution, is presented by Bermúdez and Vázquez in [10], and it is summarised below.

First, the integral of the source term over the cell Ci is divided in the sum of integrals over the

sub-triangles Tij , which have been defined in section 3.5.1 (Figure 3.3(a)). Each of the integrals

over the sub-triangles is computed by means of a discrete source function ψ, which gives the up-

wind character to the scheme. The discrete source function depends on the values of the variables

at each side of the face, and on the normal vector to the face. The source term is then discretised

as:

Si =
1

Ai

∫
Ci

S dA =
1

Ai

∑
j∈Ki

∫
Tij

S dA ≈ 1

Ai

∑
j∈Ki

ATij
ψij(wi,wj, ñij) (3.79)

where ATij
=

d⊥,ij|nij|
4

is the area of the sub-triangle Tij , and d⊥,ij has been defined in sec-

tion 3.5.1. Notice that ψij depends on the unit normal vector ñij , while the numerical flux φij

depends on nij (Equation 3.61), which includes the length of the face. The source functions ψ are

evaluated in each sub-cell Tij as:

ψij(wi,wj, ñij) =
(
I − |Q|ijQ−1

ij

)
S̃BV

ij (3.80)

where S̃BV
ij is an approximation of the source term in the sub-cell Tij , which depends on the

variables wi and wj . The matrices |Q|ij and Q−1
ij are evaluated at Roe’s or van Leer’s mean state

w̃ij , i.e. Q−1
ij = Q−1(w̃ij) and |Q|ij = |Q|(w̃ij). Notice that |Q|ijQ−1

ij = Xij|D|ijD−1
ij X−1

ij .

The expression proposed in [11] to compute S̃BV
ij in order to obtain the exact hydrostatic solu-

tion is given by:

S̃BV
ij = −g

(
hi + hj

2

)
2

(
zb,j − zb,i

d⊥,ij

)⎛⎜⎝ 0

ñx,ij

ñy,ij

⎞
⎟⎠ (3.81)

It will be shown later on in this section that with this definition of the bed slope the steady hydro-

static solution is computed exactly.

In the same line Fernández [47] shows the convenience of using an upwind discretisation of the

source terms in order to improve the order of accuracy of the numerical scheme, and proposes a

general way to upwind the source terms in 2D unstructured meshes, which is summarised here. The

main idea is that the error introduced when upwinding the convection term should be balanced by a

correction term in the discretisation of the source term. For the specific definition of the numerical

flux given by Equation 3.61, the upwind source discretisation proposed in [47] reduces to:

Si = SC
i − 1

Ai

∑
j∈Ki

d⊥,ij

2
|nij||Q|ijQ−1

ij S̃F
ij (3.82)
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where Si is the upwind discretisation of the source term, SC
i is a centred discretisation of the source

term in the cell Ci, Ai is the area of the cell Ci, and S̃F
ij is a centred approximation of the source

term at the cell face. Notice the analogy between expression 3.82 and expression 3.25, which was

presented in section 3.4 for the 1D case. In the case of the bed slope source term, and again for the

specific definition of the numerical flux given by Equation 3.61, the proposed expressions in [47]

for evaluating SC
i and S̃F

ij are:

SC
i = −g

1

Ai

∑
j∈Ki

|nij|
2

hi + hj

2
(zb,j − zb,i)

⎛
⎜⎝ 0

ñx,ij

ñy,ij

⎞
⎟⎠ (3.83)

S̃F
ij = −g

hi + hj

2

zb,j − zb,i

d⊥,ij

⎛
⎜⎝ 0

ñx,ij

ñy,ij

⎞
⎟⎠

Even though the formulation is slightly different, the same discretisation of the bed slope source

term is obtained with the scheme of Bermúdez and Vázquez (given by Equations 3.79, 3.80 and

3.81) and with the scheme of Fernández (given by Equations 3.82 and 3.83). This can be easily

proved if we consider the following relations:

1

Ai

∑
j∈Ki

ATij
S̃BV

ij = SC
i S̃BV

ij = 2S̃F
ij (3.84)

The definition of the source term S̃ij given by Equations 3.81 and 3.83 differ by a factor 2,

being the latter one more consistent with the definition of the bed slope derivative. For that reason

the scheme 3.82 has been preferred in the numerical solver in order to upwind other source terms.

Upwind discretisation of the bed slope in hydrostatic flow conditions

In order to prove the convenience of upwinding the bed slope source term, the first order schemes

of van Leer and Roe will be applied to hydrostatic flow conditions. In the hydrostatic assumption,

the discrete equations reduce to: ∑
j∈Ki

φij = SiAi (3.85)

Either Bermúdez and Vázquez or Fernández formulations may be used to discretise the bed

slope term Si, leading to the same results. Nevertheless, Equations 3.82 and 3.83 will be used here

in order to have a clear distinction between the centred and upwind contributions.

The numerical flux given by the schemes for the cell Ci is given by:

φij =
Zi + Zj

2
− 1

2
Xij|D|ijX−1

ij (wj − wi) (3.86)
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where the subindices ij indicate either the Roe’s or the van Leer’s mean state, i.e. Xij = X(w̃ij)

and |D|ij = |D|(w̃ij). Considering that qx = qy = 0 in all cells, the mean states of van Leer and

Roe are reduced to:

h̃vl =
hi + hj

2
c̃vl =

√
g
hi + hj

2
q̃x,vl = 0 q̃y,vl = 0

h̃Roe =
√

hihj c̃Roe =

√
g
hi + hj

2
q̃x,Roe = 0 q̃y,Roe = 0

(3.87)

The values of the different vectors and matrices in Equation 3.86 are given by:

Xij =

⎛
⎜⎝ 0 1 1

−ñy,ij c̃ijñx,ij −c̃ijñx,ij

ñx,ij c̃ijñy,ij −c̃ijñy,ij

⎞
⎟⎠ X−1

ij =
1

2c̃ij

⎛
⎜⎝ 0 −2c̃ijñy,ij 2c̃ijñx,ij

c̃ij ñx,ij ñy,ij

c̃ij −ñx,ij −ñy,ij

⎞
⎟⎠ (3.88)

Dij = c̃ij|nij|

⎛
⎜⎝ 0 0 0

0 1 0

0 0 −1

⎞
⎟⎠ |D|ij = c̃ij|nij|

⎛
⎜⎝ 0 0 0

0 1 0

0 0 1

⎞
⎟⎠ D−1

ij =
1

c̃ij|nij|

⎛
⎜⎝ 0 0 0

0 1 0

0 0 −1

⎞
⎟⎠

Zi = |nij|

⎛
⎜⎜⎜⎝

0

g
h2

i

2
ñx,ij

g
h2

i

2
ñy,ij

⎞
⎟⎟⎟⎠ wi =

⎛
⎜⎝ hi

0

0

⎞
⎟⎠

Notice that, since c̃vl = c̃Roe = c̃ij , expressions 3.88 are independent of the scheme used.

Introducing expressions 3.88 into Equation 3.86 gives, after some mathematical manipulation, the

total flux for the cell Ci as:

∑
j∈Ki

φij =
∑
j∈Ki

|nij|
2

g
h2

i + h2
j

2

⎛
⎜⎝ 0

ñx,ij

ñy,ij

⎞
⎟⎠−

∑
j∈Ki

|nij|
2

c̃ij(hj − hi)

⎛
⎜⎝ 1

0

0

⎞
⎟⎠ (3.89)

where the first addend accounts for the centred contribution and the second addend for the upwind

contribution.

The discretisation of the bed slope term is obtained introducing expressions 3.88 into Equa-

tions 3.82 and 3.83, which yields:

SiAi =
∑
j∈Ki

−|nij|
2

g
hi + hj

2
(zb,j − zb,i)

⎛
⎜⎝ 0

ñx,ij

ñy,ij

⎞
⎟⎠+

∑
j∈Ki

|nij|
2

c̃ij(zb,j − zb,i)

⎛
⎜⎝ 1

0

0

⎞
⎟⎠ (3.90)

where the first addend accounts for the centred contribution and the second addend for the upwind
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contribution.

Considering that in hydrostatic flow the water surface elevation is constant (zb,i+hi = zb,j+hj),

it is straightforward to show that the upwind contribution in the convective flux (second addend in

Equation 3.89) and in the source term (second addend in Equation 3.90) are equal. The balance

of the centred contributions follows directly considering that for any closed volume the following

property (Equation 3.91) applies for both the x and the y component of the normal vector:

∑
j∈Ki

h2
i ñx,ij|nij| = h2

i

∑
j∈Ki

nx,ij = 0 (3.91)

Second order upwind discretisation of the bed slope source term

If the second order extension of the van Leer’s or Roe’s schemes is used, the exact balance between

the numerical flux and the bed slope source term is broken, even if a second order extrapolation is

used to evaluate the bed elevation at the cell faces. This is because the extrapolated value of hi is

different at each cell face, and therefore,

∑
j∈Ki

hIjñx,ij|nij| 	= 0 (3.92)

where hIj is the extrapolated value of the flux from the node Ni to the cell face Lij . For this

reason, the centred contributions in the flux term discretisation (Equation 3.89) and in the source

term discretisation (Equation 3.90) do not balance any more. There is actually a deficit in the

source term given by:

Ri =
∑
j∈Ki

−g
|nij|
2

h2
Ij

⎛
⎜⎝ 0

ñx,ij

ñy,ij

⎞
⎟⎠ (3.93)

and the following relation applies:

∑
j∈Ki

φij = SiAi + Ri (3.94)

We have found that a simple and efficient solution to this problem is to use a first order approx-

imation for the water depth (hIj = hi), and a second order approximation for the unit discharges.

In this case the deficit Ri is zero:

Ri =
∑
j∈Ki

−g
|nij|
2

h2
i

⎛
⎜⎝ 0

ñx,ij

ñy,ij

⎞
⎟⎠ =

⎛
⎜⎝ 0

0

0

⎞
⎟⎠ (3.95)

and the exact balance between flux and source is recovered. This approach leads to an hybrid

95



3.5. DISCRETISATION OF THE 2D SHALLOW WATER EQUATIONS

scheme that is able to compute the hydrostatic flow solution exactly, and at the same time it does not

introduce an excessive numerical diffusion which may interfere with the real turbulent diffusion.

Hubbard and García-Navarro [62] proposed a high order correction of the source term in order

to obtain a fully second order scheme which gives an exact balance between convective flux and

bed slope in the hydrostatic case. Following the ideas of Hubbard and García-Navarro, when using

a second order scheme Equation 3.93 can be replaced by the more general relation:

Ri = −
∑
j∈Ki

[Fx,Ijnx,ij + Fy,Ijny,ij] = −
∑
j∈Ki

[(Fx,Ij − Fx,i)nx,ij + (Fy,Ij − Fy,i)ny,ij] (3.96)

Equation 3.96 is actually a discretisation of the flux gradient between the node Ni and the

face Lij . Hence, it can be rewritten as:

Ri = −
∑
j∈Ki

(
∂Fx

∂x
+

∂Fy

∂y

)
iI

|nij|d⊥,ij

2
= −

∑
j∈Ki

SiI |nij|d⊥,ij

2
(3.97)

where it has been considered that we want to maintain a balance between the convective flux and

the bed slope source term in the hydrostatic case. The vector SiI in Equation 3.97 accounts for a

discretisation of the bed slope term between the node Ni and the face Lij . Having this in mind,

and considering Equation 3.94, the new discretisation of the source term is given by:

S∗
i = Si +

1

Ai

Ri = Si − 1

Ai

∑
j∈Ki

SiI |nij|d⊥,ij

2
(3.98)

= Si − 1

Ai

∑
j∈Ki

[
−|nij|

2
g
hi + hIj

2
2(zb,Ij − zb,i)

]⎛⎜⎝ 0

ñx,ij

ñy,ij

⎞
⎟⎠

where S∗
i is the new discretisation of the source term. In Equation 3.98, the upper-case subindices

refer to extrapolated variables at the cell faces, and the lower-case subindices refer to node values.

It is straightforward to show that the source term S∗
i balances exactly the convective flux in the

hydrostatic case.

Most of the applications in this thesis have been computed with the hybrid first/second order

scheme (first order for the water depth and second order for the unit discharges). Some of them

have also been computed with the fully second order scheme proposed by Hubbard and García-

Navarro. No significant differences have been found in the results given by both schemes, maybe

because the water depth gradients were not large enough.
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3.5.8 Discretisation of the viscous diffusive flux

As well as the bed slope, the diffusive flux source term may be discretised with a centred or with

an upwind scheme.

Centred discretisation of the viscous diffusive flux

The viscous diffusive flux in the x-momentum equation is expressed as:

∂

∂x

(
νh

∂Ux

∂x

)
+

∂

∂y

(
νh

∂Ux

∂y

)
(3.99)

being ν the kinematic viscosity. Integrating Equation 3.99 over the cell Ci, and applying the Gauss

theorem gives:∫
Ci

∂

∂x

(
νh

∂Ux

∂x

)
+

∂

∂y

(
νh

∂Ux

∂y

)
dA ≈

∑
j∈Ki

νijhij

(
∂Ux

∂x
ñx +

∂Ux

∂y
ñy

)
ij

|nij| (3.100)

where the integral over the cell boundary has been split into the sum of integrals over each face

Lij . With this formulation the scheme remains conservative, since the diffusive flux is computed

at the cell faces, assuring that the flux which exits any cell through one face is the same flux which

enters the adjacent cell through the same face. Equation 3.100 is evaluated at all the cell faces.

The eddy viscosity, water depth, and velocity gradient at each cell face are computed as the

average of their values at the nodes of the adjacent cells:

νij =
νi + νj

2
hij =

hi + hj

2
(∇Ux)ij =

(∇Ux)i + (∇Ux)j

2
(3.101)

The approach presented in section 3.5.6 is used in order to evaluate the velocity gradient at the cell

nodes.

Upwind discretisation of the viscous diffusive flux

Equation 3.82 has been used to upwind the viscous term. The centred part is computed from

Equations 3.100 and 3.101. In order to compute the upwind part, the laplacian of the velocity must

be approximated at the cell faces. In order to do so, a 1D approach in the normal direction to the

cell face is used, in the same way as it has been done when upwinding the convective flux and

the bed slope source terms. In such a way, the laplacian of the velocity Ux at the cell face Lij is

approximated as:

∂2Ux

∂x2

∣∣∣∣
ij

+
∂2Ux

∂y2

∣∣∣∣
ij

≈ 1

d⊥,ij

(
∂Ux

∂x

∣∣∣∣
j

− ∂Ux

∂x

∣∣∣∣
i

)
ñx,ij +

1

d⊥,ij

(
∂Ux

∂y

∣∣∣∣
j

− ∂Ux

∂y

∣∣∣∣
i

)
ñy,ij (3.102)
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where d⊥,ij is the distance between the nodes Ni and Nj measured in the normal direction to the

cell face. The laplacian of the Uy velocity is evaluated in a similar way.

Semi-implicit diffusion

As it has been argued in section 3.4, when the viscosity is too large, it is convenient to implicit

the main diagonal of the diffusion source term in order to relax the stability condition over the

time step. In order to do so, following the ideas of Davidson [32], the total diffusive flux (Dtot) is

decomposed in two parts: an orthogonal diffusion (D⊥) and a non-orthogonal diffusion (D‖):

Dtot = D⊥ + D‖ (3.103)

In order to do so, the gradient of the velocity at the cell face Lij (Equation 3.100) is computed

applying the Gauss theorem to the volume Aij , which is defined by the shaded area in Figure 3.7.

The two sides of the volume Aij which pass through the nodes Ni and Nj , are defined by the same

normal vector as the cell face Lij , i.e. nij . The other two sides of the volume are parallel to the

line which joins the nodes Ni and Nj , and are defined by the normal vector αij (|αij| = dij). The

area of the volume is given by Aij = |nij|d⊥,ij .

Figure 3.7: Evaluation of the diffusion term.

The derivatives of the velocity Ux at the cell face Lij are evaluated as:

∂Ux

∂x

∣∣∣∣
ij

≈ 1

Aij

∫
Aij

∂Ux

∂x
dA =

1

Aij

∫
L

Uxñx dL (3.104)

≈ 1

Aij

(Ux,jnx,ij + Ux,Bαx,ij − Ux,inx,ij − Ux,V αx,ij)

∂Ux

∂y

∣∣∣∣
ij

≈ 1

Aij

∫
Aij

∂Ux

∂y
dA =

1

Aij

∫
L

Uxñy dL

≈ 1

Aij

(Ux,jny,ij + Ux,Bαy,ij − Ux,iny,ij − Ux,V αy,ij)
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Introducing the expressions 3.104 in Equation 3.100, and considering that Aij = |nij|d⊥,ij , the

following expression is obtained for the discrete diffusive flux at the cell Ci:

∑
j∈Ki

νijhij

(
∂Ux

∂x
ñx +

∂Ux

∂y
ñy

)
ij

|nij| ≈
∑
j∈Ki

νijhij
|nij|
d⊥,ij

(Ux,j − Ux,i)︸ ︷︷ ︸
D⊥≡orthogonal

(3.105)

+
∑
j∈Ki

νijhij
dij

d⊥,ij

(Ux,B − Ux,V ) (α̃x,ijñx,ij + α̃y,ijñy,ij)︸ ︷︷ ︸
D‖≡non-orthogonal

The non-orthogonal part (second addend in Equation 3.105) is treated explicitly with the rest

of source terms, while the orthogonal part (first addend in Equation 3.105) is split as:

D⊥ = νijhij
|nij|
d⊥,ij

(Ux,j − Ux,i) = ΓD⊥Ux,j − ΓD⊥

hi

qx,i (3.106)

where ΓD⊥ =
νijhij|nij|

d⊥,ij

is the orthogonal diffusion coefficient. It should be noticed that in

orthogonal meshes, the vectors nij and αij are perpendicular, and therefore, the non-orthogonal

diffusion in Equation 3.105 vanishes (D‖ = 0). In Equation 3.106 all the variables are evaluated

at time tn except the unit discharge qx,i, which is evaluated at time tn+1. In this way no additional

computational cost is introduced, since there is no need to solve any system of equations.

3.5.9 Discretisation of the Reynolds stresses

Depending on the turbulence model used, the Reynolds stresses are computed in different ways. In

the eddy viscosity models the Reynolds stresses are computed with the Boussinesq approximation,

and the form of the turbulent stress term is similar to that one of the viscous diffusion term, just

replacing the kinematic viscosity by the eddy viscosity, which for the x-momentum equation reads:

∂

∂x

(
νth

∂Ux

∂x

)
+

∂

∂y

(
νth

∂Ux

∂y

)
(3.107)

This is the case of the mixing length model and the k − ε model. In those cases it is used the

same scheme as for the viscous diffusion term (section 3.5.8).

If the depth averaged algebraic stress model is used, the Reynolds stresses are computed with

algebraic expressions, and it is not necessary to compute any derivative at the cell faces. In that

case, the integral over the cell Ci of the turbulent stresses is computed as:

∫
Ci

∂u′2

∂x
+

∂u′v′

∂y
dA =

∫
Li

u′2ñx,ij + u′v′ñy,ij dL ≈
∑
j∈Ki

u′2
ijnx,ij + u′v′

ijny,ij (3.108)
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with an analogous expression for the y-momentum equation. Notice that the symbols <> account-

ing for depth averaged values have been omitted for the sake of clarity in the notation. The value

of any Reynolds stress at the cell face is computed as the average of the values at each adjacent

node:

u′2
ij =

u′2
i + u′2

j

2
(3.109)

The value of the Reynolds stresses at the cell nodes is obtained directly from the algebraic

expressions presented in section 2.5. All the derivatives at the cell nodes are computed with the

scheme presented in section 3.5.6. A centred discretisation scheme has always been used in order

to evaluate the turbulent terms with the algebraic stress model.

3.5.10 Discretisation of the bed friction source term

Centred discretisation of the bed friction term

In order to improve the stability of the numerical scheme when the bed friction coefficient is large,

both an explicit and a semi-implicit discretisation scheme for the bed friction source term (G2)

have been implemented in the numerical solver.

In the explicit scheme the friction term is evaluated at each cell node at the time tn. Any of

the formulations which have been presented in section ?? may be used to compute the bed friction

coefficient cf :

Ge
2,i = − cf

h2
i

⎛
⎜⎝ 0

|q|iqx,i

|q|iqy,i

⎞
⎟⎠ (3.110)

where all the variables are evaluated at time tn. The semi-implicit discretisation evaluates the

friction term as:

Gsi
2,i = − cf

h2
i

⎛
⎜⎝ 0

|q|ni qn+1
x,i

|q|ni qn+1
y,i

⎞
⎟⎠ (3.111)

The semi-implicit discretisation has not any additional computational cost, since it is linear in

qn+1
x,i and in qn+1

y,i . The conservative variable qn+1
x,i at the new time step is computed as:

qn+1
x,i =

(
qn
x,i + Δt

(
Gn

1,i(2) + Gn
3,i(2) − Cn

i (2)
)) 1

1 + cf
|q|i
h2

i

Δt

(3.112)

with an analogous expression for qn+1
y,i . The terms Gn

1,i(2) and Gn
3,i(2) account for any explicit

discretisation of the bed slope and turbulent diffusion source terms in the x-momentum equation.

The term Cn
i (2) accounts for any explicit discretisation of the convective flux in the x-momentum
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equation.

Upwind discretisation of the bed friction term

The same upwind discretisation scheme which has been used for the bed slope and viscous source

terms has been implemented in order to upwind the bed friction term. It should only be remarked

that the centred part in Equation 3.82 may be computed with the explicit or semi-implicit schemes

presented above, while an explicit scheme is always used for the upwind part.

3.6 Discretisation of the depth averaged k − ε model

3.6.1 The depth averaged k − ε model in conservative form

The depth averaged k − ε model solves two transport equations, one for the depth averaged turbu-

lent kinetic energy k, and another for the depth averaged dissipation rate ε. The equations of the

model have been presented in chapter 2, and are repeated here in conservative and vectorial form:

∂Φ

∂t
+

∂FΦ,x

∂x
+

∂FΦ,y

∂y
=

4∑
m=1

Hm (3.113)

where the turbulent conservative variables Φ, and their physical fluxes FΦ,x and FΦ,y, are given

by:

Φ =

(
hk

hε

)
FΦ,x =

(
hkUx

hεUx

)
= UxΦ FΦ,y =

(
hkUy

hεUy

)
= UyΦ (3.114)

The source terms Hm (m = 1, 4), account respectively for the viscous and turbulent diffu-

sion (H1), the production due to horizontal velocity gradients (H2), the production due to bed

friction (H3), and the dissipation rate (H4):

H1 =

⎛
⎜⎜⎝

∂

∂xj

(
(ν +

νt

σk

)h
∂k

∂xj

)
∂

∂xj

(
(ν +

νt

σε

)h
∂ε

∂xj

)
⎞
⎟⎟⎠ H2 =

(
min (2νtSijSijh, 10εh)

c1ε
ε

k
2νtSijSijh

)

H3 =

⎛
⎝ min(cku

3
f , 10εh)

cε

u4
f

h

⎞
⎠ H4 =

⎛
⎝ −εh

−c2ε
ε2

k
h

⎞
⎠

(3.115)

with:

νt = min

(
cμ

k2

ε
,
k

3

(
2

SijSij

)1/2
)
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where Sij is the horizontal mean strain-rate tensor computed from the depth averaged velocity

(Equation 2.65), and uf is the bed friction velocity. The constants and coefficients of the model

can be found in section 2.4.5 for the three versions implemented in the code (Rastogi and Rodi,

Babarutsi and Chu, Booij). In the model of Babarutsi and Chu the vertical production source term

is zero (H3
BC = 0) and the source term H4 is replaced by:

H4
BC =

⎛
⎝ −εh − F ′h

−c2ε
ε2

k
h − hc1ε

ε′

k′ (1 − c3ε)F
′

⎞
⎠ (3.116)

where the superindex BC refers to Babarutsi and Chu.

The transport equations for k and ε are coupled via the source terms Hm. However, in contrast

with the shallow water equations, there is no explicit coupling via the convective flux. Therefore,

both equations will be discretised independently. In this case the normal flux ZΦ = FΦ,xnx +

FΦ,xny is an homogeneous function which can be decomposed as:

ZΦ =
∂ZΦ

∂Φ
Φ = (Uxnx + Uyny)

(
1 0

0 1

)(
hk

hε

)
= (Uxnx + Uyny)Φ (3.117)

The upwind direction for both equations is the same, and it is given directly by the depth

averaged velocity field:

ZΦ = λΦ (3.118)

λ = Uxnx + Uyny

The same considerations about the time and spatial discretisation schemes that have been ex-

posed for the shallow water equations apply for the k − ε model. The stability condition over

the time step applied to the k − ε equations gives (assuming a semi-implicit discretisation of the

diffusive flux):

Δti = CFL
di

|U|i CFL ≤ 1 (3.119)

where di =
Ai

Pi

is the ratio between the area Ai and the perimeter Pi of each cell, and |U|i is

the module of the velocity vector. Condition 3.119 is less restrictive than the condition over the

time step for the shallow water equations (Equation 3.55). For this reason the time step at each

iteration is taken from condition 3.55, and it is used for both the shallow water and the k − ε

models. Nevertheless, it should be taken into account that the stability condition is obtained from

the linear convection-diffusion equation without source terms. The source terms may influence

the stability of the numerical scheme, specially considering that they are strongly dependent on

the conservative variables as well as on their derivatives. The coupling between the flow and the

102



CHAPTER 3. NUMERICAL SOLVER

turbulence model is an additional source of instability. Therefore, the maximum CFL value in

order to obtain stability may vary depending on the flow conditions. In the practical applications

studied in this thesis the CFL values were usually in the range 0.7 − 1.3.

3.6.2 Discretisation of the convective and diffusive fluxes

First order upwind scheme

Both the k− ε model and the shallow water equations are hyperbolic systems of conservation laws

with source terms. However, the fact that the two eigenvalues of the k − ε equations are equal,

makes the numerical scheme simpler, since the upwind direction depends only on the normal

velocity to the cell face.

In order to discretise the convective flux at the cell faces, Equation 3.118 will be used. The

convecting part, which is given by the normal velocity to the face (λ), is treated centred, while the

convected part, which is given by the conservative turbulent variables (Φ), is upwinded. Hence, at

the cell face Lij , the numerical flux (Z∗
Φ,ij) is computed as:

Z∗
Φ,ij =

⎧⎨
⎩λijΦi if λij > 0

λijΦj if λij ≤ 0
(3.120)

which can also be written as:

Z∗
Φ,ij = λijΦij︸ ︷︷ ︸

centred

− 1

2
|λij| (Φj − Φi)︸ ︷︷ ︸

upwind

(3.121)

where Z∗
Φ,ij is the numerical flux. The subindex ij accounts for a centred discretisation at the cell

face (Φij =
Φi + Φj

2
, λij =

λi + λj

2
). The scheme is first order accurate in space. All the source

terms are discretised with a centred scheme.

As it has been done in the momentum equations, the diffusive flux (H1) is split in two parts:

an orthogonal contribution (H1⊥) and a non-orthogonal contribution (H1‖):

H1 = H1⊥ + H1‖ (3.122)

Both contributions are computed in an analogous way as it was explained in section 3.5.8 for

the momentum equations. In this way, using Equation 3.121, the following discrete equation is

obtained for the node Ni:(
∂Φ

∂t

)
i

Ai+
∑
j∈Ki

[
λij

Φi + Φj

2
− 1

2
|λij| (Φj − Φi)

]
=
∑
j∈Ki

[ΓD⊥,ij (Φj − Φi)]+HiAi (3.123)
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where ΓD⊥,ij =
νe,ij|nij|

d⊥,ij

is the orthogonal diffusion coefficient (where νe is the effective viscos-

ity), and Ai is the area of the cell Ci. The vector Hi accounts for all the source terms, including

the non-orthogonal diffusion (but obviously excluding the orthogonal diffusion), evaluated in the

cell Ci:

Hi = H1‖,i +
4∑

m=2

Hm,i (3.124)

Rearranging terms in Equation 3.123 yields:(
∂Φ

∂t

)
i

Ai +
∑
j∈Ki

[
λij

Φi + Φj

2
−
(

1

2
|λij| + ΓD⊥,ij

)
(Φj − Φi)

]
= HiAi (3.125)

It is very clear in Equation 3.125 that the upwind part of the convective flux is equivalent

to an orthogonal diffusion term with a diffusion coefficient given by
1

2
|λij|. Using an explicit

discretisation in time, Equation 3.125 can be written in standard form as:

Φn+1
i =

(
1 − Δt

Ai

an
i

)
Φn

i +
Δt

Ai

∑
j∈Ki

an
ijΦ

n
j + ΔtHn

i (3.126)

with the coefficients:

ai =
∑
j∈Ki

(
λij + |λij|

2
+ ΓD⊥,ij

)
aij =

−λij + |λij|
2

+ ΓD⊥,ij (3.127)

Considering that ΓD⊥,ij is always positive, it is straightforward to show that the artificial diffu-

sion coefficient (1
2
|λij|) ensures that all the coefficients ai and aij in Equation 3.126 are positive.

Therefore, the scheme is stable for:

Δt <
Ai

an
i

(3.128)

This condition is relaxed if the viscous diagonal is treated implicitly, in which case the value

of an
i diminishes. If both the convective and the diffusive fluxes are treated implicitly, the stability

condition over Δt disappears.

Hybrid scheme

When the diffusive flux is of the same order or larger than the convective flux, a second order

centred scheme can be used to discretise the convective flux without stability problems. The hybrid

central/upwind scheme [102] uses central differencing when diffusion predominates (leading to a

second order scheme), and upwind differencing when convection predominates (returning to a first

order scheme).

The upwind character of the first order scheme is given by the term |λij|, which ensures that
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all the coefficients in Equation 3.126 remain positive. In the hybrid scheme the term |λij| is used

as a minimum diffusion coefficient in order to obtain stability. With this in mind, the coefficients

ai and aij in the hybrid scheme are given by:

ai =
∑
j∈Ki

[
λij

2
+ max

( |λij|
2

, ΓD⊥,ij

)]
aij = −λij

2
+ max

( |λij|
2

, ΓD⊥,ij

)
(3.129)

The term |λij| is only used when the real diffusion is not large enough to give stability, i.e.

when the Peclet number is larger than 2 (Pe =
λij

ΓD⊥,ij

> 2). An alternative way to write the

coefficients ai and aij , which shows clearly that all the coefficients are positive, is:

ai =
∑
j∈Ki

max

(
0, λij,

λij

2
+ ΓD⊥,ij

)
aij = max

(
0,−λij,−λij

2
+ ΓD⊥,ij

)
(3.130)

The hybrid scheme cannot be considered as second order accurate, since usually the Peclet

number is larger than 2, and therefore, the coefficients given by Equation 3.130 return the first

order upwind scheme (Equation 3.127). For this reason the hybrid scheme is only marginally

better than the first order scheme.

Extension to second order

The extension of the first order upwind scheme to second order is obtained in the same way as

in the shallow water equations (section 3.5). The conservative variables are extrapolated from the

cell nodes to the cell faces with a MUSCL approach, using the two triangles associated to each cell

face (Figure 3.4):

ΦIj = Φi +
1

2
ΔΦ∗

i (3.131)

ΦiJ = Φj +
1

2
ΔΦ∗

j

with:

ΔΦ∗
i =

⎧⎨
⎩max [ 0, min (β∇Φirij, ΔΦij) , min (∇Φirij, βΔΦij)] if ΔΦij > 0

min [ 0, max (β∇Φirij, ΔΦij) , max (∇Φirij, βΔΦij)] if ΔΦij < 0

with ΔΦij = Φj − Φi. In Equation 3.131, ΦIj and ΦiJ are the extrapolated values on each side

of the cell face Lij , and ΔΦ∗
i and ΔΦ∗

j are the limited slopes. The value β = 1 gives the Minmod

limiter, while the value β = 2 reproduces the Superbee limiter [134]. The extrapolated face values

given by Equation 3.131 are used directly in Equation 3.126.
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3.6.3 Discretisation of the source terms

All the source terms are discretised at the cell nodes using a centred scheme. Following the ideas

of Davidson [32] all the negative source terms are included in the main diagonal of the system of

equations in order to reinforce the stability of the scheme, and to help the turbulent variables to

remain positive during the numerical computation. In order to do that, the source term is linearised

as:

H = Hn
NΦn+1 + Hn

P (3.132)

All the negative source terms are included in Hn
N . The source terms in the k−ε model are given

by Equation 3.115. The production source terms H2 and H3 are always positive, and therefore are

included explicitly in Hn
P . The dissipation source term H4 is always negative, so it is included in

Hn
N as:

H4 =

⎛
⎝ −εh

−c2ε
ε2

k
h

⎞
⎠ =

⎛
⎝ − ε

k
−c2ε

ε

k

⎞
⎠n(

kh

εh

)n+1

(3.133)

Finally, the diffusion term H1 may be positive or negative, and thus, it is included in Hn
P or Hn

N

depending on its sign. With this considerations in mind, the terms Hn
N and Hn

P in Equation 3.132

are given by:

Hn
N = min

(
H1

Φ
, 0

)n

+

⎛
⎝ − ε

k
−c2ε

ε

k

⎞
⎠n

(3.134)

Hn
P = max (H1, 0)n + H2

n + H3
n

and Equation 3.126 is replaced by:

Φn+1
i

(
1 − Hn

N,i

)
=

(
1 − Δt

Ai

an
i

)
Φn

i +
Δt

Ai

∑
j∈Ki

an
ijΦ

n
j + ΔtHn

P,i (3.135)

with the coefficients ai and aij given by Equation 3.127.

3.7 Implementation of the depth averaged ASM

The depth averaged algebraic stress model proposed in section 2.5 needs to solve first the k − ε

equations in order to compute the turbulent kinetic energy, the dissipation and the eddy viscosity.

The k − ε equations are solved as explained in section 3.6, with the only difference that the tur-

bulent kinetic energy production term Pk is computed directly from its exact expression using the
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Reynolds stresses:

Pk = −u′
iu

′
j

∂Ui

∂xj

= −u′2 ∂U

∂x
− u′v′

(
∂U

∂y
+

∂V

∂x

)
− v′2∂V

∂y
(3.136)

Once the k− ε model is solved, the values of the turbulent kinetic energy, dissipation and eddy

viscosity are directly plugged into the algebraic expressions given by Equation 2.105, in order to

compute the Reynolds stresses at each cell node.

3.8 Implementation of the wall boundary condition

Depending on the mesh size, three different ways of implementing the wall boundary conditions

have been explained in section 1.4, namely: the no-slip condition, wall functions and the slip

condition.

3.8.1 No-slip condition

The no-slip condition is used either when the near wall mesh size is very fine (y+ ≈ 1) or when

the flow is laminar. All the variables, except the water depth, are fixed at the wall boundary nodes:

qx,w = qy,w = 0 kw = 0 εw = ν
∂2k

∂y2
(3.137)

u′2
w = u′v′

w = v′2
w = 0

where y is the normal direction to the wall. In turbulent flows this implementation requires a very

fine mesh near the walls, with the first inner node at approximately y+ ≈ 1. It requires also to use

low-Reynolds versions of the standard turbulence models, with near wall correction terms. This

kind of approach has not been used in the practical applications in this thesis. This is because

the extent of the computational domains, and the flow conditions, would require meshes with a

number of nodes too large for the available computer power.

3.8.2 Wall functions

The second way of implementing the wall boundary condition is using wall functions. The main

differences with the no-slip condition are: (1) the turbulent variables are fixed at the first inner

nodes (log-law nodes in Figure 3.3(b)) and not at the boundary nodes; (2) it is the wall friction, and

not the tangential velocity, that is imposed at the boundary nodes. The wall boundary conditions
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are implemented as:

qy,w = 0 τw = ρu2
∗ k1 =

u2
∗√
cμ

ε1 =
u3
∗

κy
(3.138)

u′2
1 = 3.63u2

∗ u′v′
1 = −u2

∗ v′2
1 = 0.825u2

∗

where the subindex 1 refers to the values at the first inner node (log-law nodes), τw is the shear

stress at the wall, which is imposed directly as a source term at the boundary faces, and u∗ is the

wall friction velocity, which is computed from the logarithmic law, using the mesh independent

wall functions approach of Menter [90] (see section 1.4).

3.8.3 Slip condition

The slip condition is only used when the near wall mesh is very coarse, and therefore, the first inner

node lies outside the logarithmic layer. It is difficult to fix a value where the boundary condition

should change from logarithmic law to slip condition, and this is left to the user criterion. It should

be noticed that the usual agreed limits for the validity of the logarithmic law are 11 < y+ <

50 − 100.

The slip condition sets to zero the normal velocity in the boundary wall nodes. The tangential

velocity, as well as the water depth, are left free. The shear stress at the wall is neglected, as well

as the diffusion of the turbulent quantities through the wall.

qy,w = 0 τw = 0
∂k

∂y

∣∣∣∣
w

= 0
∂ε

∂y

∣∣∣∣
w

= 0 (3.139)

∂u′2

∂y

∣∣∣∣∣
w

= 0
∂u′v′

∂y

∣∣∣∣
w

= 0
∂v′2

∂y

∣∣∣∣∣
w

= 0

where y is the normal direction to the wall.
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3.9 Wet-dry fronts. The wet-dry condition

Many of the practical applications in which the shallow water equations are used include regions

of the spatial domain that may be dry or wet due to changes in the water surface elevation. In

those situations it appears a moving boundary, defined by a wet-dry front, which needs to be

treated adequately in order to obtain accurate and stable results. Typical problems with wet-dry

fronts include flood simulation, unsteady river flow, propagation of tidal waves in estuaries, and

estimation of long wave runup in coastal regions, among others.

Several approaches exist in order to model the movement of the wet-dry front. Some models

use a computational mesh that moves with the boundary, as for example the finite element models

of Akanbi and Katopodes [1] and Stockstill et al. [129]. This approach is computationally very

expensive, since the mesh must be regenerated each time the boundary moves, and may require the

addition of new nodes in order to avoid an excessive deformation of the numerical cells.

A more common approach to the problem is to consider a fixed mesh, and to allow the control

volumes to wet and dry. This approach is used by many researchers in finite volume models

[19, 40, 49] as well as in finite element models [71, 131], and it has been the one adopted in the

numerical solver.

A wet-dry tolerance parameter (εwd) is defined, so if the water depth in a cell is lower than εwd,

the cell is considered to be dry. In the same way, if the mean water depth at the face Lij is lower

than εwd, the face is considered to be dry and it does not participate in the calculation. The water

depth is never forced to zero, in order to keep the mass conservation property of the scheme. The

wet-dry tolerance parameter helps to avoid negative water depths which might cause instabilities

in the solution. The lowest value of εwd is desired in order to obtain accurate solutions. However,

an excessively low value of εwd promotes the numerical instabilities and obliges to use a very small

CFL, specially when dealing with a very irregular bathimetry.

The wet-dry tolerance parameter is also used in the turbulence models. In the dry cells (hi ≤
εwd) the eddy viscosity is set to zero and, in the case of the ASM and k − ε models, the turbulent

energy and dissipation are fixed to a residual value (εk and εeps), which is several orders of magni-

tude smaller than the minimum values expected in the flow. At the same time the production terms

due to vertical and horizontal shear are set to zero (Pkv = Pk = Pεv = Pε = 0). The diffusion and

convection terms are fixed to zero in the dry faces. When a cell is wet (hi > εwd) but the water

depth is very small, the vertical production term Pkv might become very large. In those situations,

the production limiter given by Equation 2.89 helps to control the maximum value of Pkv, giv-

ing more stable results. Actually, the fact of limiting the vertical production allows using smaller

values of the wet-dry tolerance parameter without producing instabilities in the k − ε model.

The fix mesh approach needs a suitable wet-dry condition at the fluid interface which assures

conservation of mass and momentum, and at the same time not diffusive and free of spurious
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oscillations. If a well-balanced condition is not used, the dry cells may get artificially wet and non-

physical movements of the free surface may appear under hydrostatic conditions, specially in the

presence of large bed slopes. As it is detailed by Brufau in [17], this movement is a consequence of

the difference between the computed water depth and bed elevation gradients. The ideas of Brufau

et al. [19] with a slight modification in the reflection condition will be used here in order to deal

with the wet-dry front.

In order to deal with the wet-dry front, a piecewise constant distribution of the bed elevation

will be assumed (Figure 3.8). This is the usual finite volume approach, used when computing the

convective flux with a first order upwind scheme. When used with a correct numerical scheme,

this approach is able to capture discontinuities in the solution without diffusing them, which is a

very valuable feature when dealing with large bed slopes or discontinuities in the bed elevation,

i.e. vertical walls.

Figure 3.8: Discretisation of the bed elevation.

Assuming a constant bed elevation in each cell, there are two conditions which need to be

imposed at the wet-dry fronts: (1) redefinition of the bed elevation; (2) reflection condition.

The aim of redefining the bed elevation is to obtain an exact balance at the wet-dry front

between the bed slope and the hydrostatic pressure terms for hydrostatic flow. If the bed slope

is not redefined, spurious waves are generated at the front, which may be stronger or weaker

depending on the slope gradient and on the flow conditions. If the wet-dry front occurs between

the cells Ci and Cj , the increment in the bed elevation at the front (Δzb,ij) is defined as:

Δzb,ij =

⎧⎨
⎩hi − hj if hj ≤ εwd and hi < zb,j − zb,i

zb,j − zb,i otherwise
(3.140)

where it has been assumed without loss of generality that the cell Ci is always the wet one. The

modified bed slope is given by Δzb,ij , h is the water depth, zb is the bed elevation, and εwd is

the wet-dry tolerance parameter. Note that only the first condition in 3.140 modifies the real bed

elevation.

The treatment of the wet-dry fronts given by Equation 3.140 gives the exact hydrostatic flow so-
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(a) Bed redefinition Δzb,ij = hi.
Reflection condition qij = 0

(b) No redefinition. No reflec-
tion condition

(c) No redefinition. No reflec-
tion condition

Figure 3.9: Wet-dry front.

lution for any bed elevation without diffusing the front. In order to prove that, the first order scheme

of van Leer will be applied to hydrostatic flow with the bed slope defined by Equation 3.140. The

numerical flux and source terms computed by the van Leer’s scheme with an upwind treatment of

the source terms were obtained in section 3.5.7, and are given by Equations 3.89 and 3.90. The nec-

essary condition in order to show that the numerical flux balances exactly the source term, is given

by zb,i +hi = zb,j +hj , which is a constant free surface elevation condition. This is always fulfilled

in hydrostatic wet domains. However, in a wet-dry front like that one shown in Figure 3.9(a) this

condition does not apply unless the bed slope is modified as it is defined in Equation 3.140, in

which case the exact balance in the momentum equation is obtained. In other case the water would

climb through the front in order to balance the equations, diffusing in such a way the wet-dry front.

In a general case the velocity on the left wet cell is different from zero (qi 	= 0). In this

situation the reflection condition fixes the normal unit discharge at the wet-dry front (qn,ij) to zero

when computing the numerical flux, which actually is the kinetic condition at any wall or surface.

qn,ij = qx,ijñx,ij + qy,ijñy,ij = 0 (3.141)

where the subindex ij refers to the interface values. Condition 3.141 only applies when hi <

zb,j − zb,i (Figure 3.9(a)). The fact of setting the normal unit discharge to zero at the interface is

justified by the assumption of a constant bed elevation in each cell with discontinuities at the cell

faces, which is similar to have a set of small vertical walls (Figure 3.8). In this way the wet-dry

front is only allowed to advance when the water depth in the wet cell is larger than the bed step

between cells (hi > zb,j − zb,i, Figure 3.9(b)). It should be noticed that the unit discharge is not set

to zero in the left cell, but only at the face Lij when computing the numerical flux at the wet-dry

front.

Condition 3.141 also assures that the convective transport of k and ε is zero at wet-dry fronts

with hi < zb,j − zb,i (Figure 3.9(a)). In these cases the diffusive flux of k and ε over the face Lij is

also set to zero.
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Chapter 4

Code validation

4.1 Introduction

In chapter 3, a numerical solver for the depth averaged shallow water equations has been presented

and discussed. In this chapter the solver is applied to simple flow conditions in order to verify

its correct behaviour. The evaluation of the convective flux with the first order van Leer’s and

Roe’s schemes, as well as the upwind discretisation of the bed slope source term, have been taken

from previous works of Vázquez-Cendón [143]. A detailed description of the performance of

those schemes can be found in [10, 143, 144]. Here we will focus on the diffusion term as well

as in the turbulence models. The performance of the second order extension of van Leer’s and

Roe’s schemes, and the treatment of wet-dry fronts are also checked. Three simple channel flow

conditions will be used in this chapter:

• Uniform channel flow.

It is the flow taking place in the centre region of an infinitely wide rectilinear channel. The

flow is homogeneous in the transverse direction, and thus, it can be modelled using either

the 2D or the 1D shallow water equations.

• Laminar channel flow.

It is the flow in a finite width channel when the Reynolds number is small enough, and

turbulence has not yet developed.

• Turbulent channel flow.

It is the flow in a finite width channel when the Reynolds number is large, and turbulence is

fully developed.

It should be noticed that a turbulence model cannot predict whether the flow is laminar or

turbulent. Therefore, when the flow is laminar the eddy viscosity must be set to zero.
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4.2 Some hydrostatic flow computations

The hydrostatic flow condition is given by:

qx = 0 qy = 0 zb + h = cte (4.1)

Despite the simplicity of the flow conditions, if a correct discretisation of the bed slope source

term is not used the solution may show spurious waves, as it has been pointed out in previous

works by Bermúdez and Vázquez [10] and Brufau [17] among others. In hydrostatic conditions,

the momentum equations reduce to a balance between the hydrostatic pressure gradient and the

bed slope term (gravity force):

∂h

∂x
= −∂zb

∂x

∂h

∂y
= −∂zb

∂y
(4.2)

From Equation 4.2 it is obvious that if the hydrostatic pressure gradient, which is included

in the convective flux term, is discretised with an upwind scheme, it is also necessary to upwind

the bed slope gradient in order to have a correct balance of momentum. In other case an error is

introduced in the equations. In general, for small bed slopes the error is not large, but it can be

important for steep bed gradients, as it will be shown in the following examples.

4.2.1 Example 1: steep bed slope

The hydrostatic flow in a rectilinear channel (Figure 4.1) with discontinuities in the bed elevation

will be computed. The bed shape is given by:

zb =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ x < 2

−1 if 2 ≤ x < 4

1 if 4 ≤ x < 6

−1 if 6 ≤ x < 8

0 if 8 ≤ x ≤ 10

(4.3)

This bed shape can be found in many practical situations with submerged walls or ditches. The

computations have been done in a 2D rectilinear channel with a relatively coarse mesh. Figure 4.1

shows the triangular mesh from which the control volumes are generated in the way it has been

explained in section 3.5.1.

The hydrostatic solution is a constant free surface level, given by the water depth imposed

at the right boundary. Table 4.1 summarises the 5 different discretisation schemes which have

been applied to compute the hydrostatic solution. The results presented in this section apply to
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Figure 4.1: Triangulation of the numerical domain in a rectilinear channel.

both, van Leer’s and Roe’s schemes. Scheme A is the usual first order upwind scheme with a

centred discretisation of the source term. As it was proved in chapter 3, this scheme generates

non-physical oscillations of the free surface (Figure 4.2(a)). The oscillations are even larger for

the unit discharge (Figure 4.2(b)). The exact solution is obtained with Scheme B, which uses a

first order upwind discretisation of the bed slope. However, when the second order extension of

the upwind schemes is used to discretise the convective flux, spurious waves appear again, even

if the source term is also upwinded with a second order scheme (Scheme C). The exact solution

is recovered again with Scheme D, where the second order extension is only used to compute the

unit discharges, while keeping the first order upwind approximation for the water depth and the

bed slope. Scheme D is first order in h and zb, and second order in qx and qy. In order to obtain a

fully second order scheme free of spurious oscillations, Scheme E uses the second order upwind

discretisation for all the variables, including the source term, but with a second order correction of

the bed slope source term, as it has been explained in section 3.5.7.

Convective Flux Bed slope Exact hydrostatic solution?

Scheme A Upwind order 1 Centred No

Scheme B Upwind order 1 Upwind order 1 Yes

Scheme C Upwind order 2 Upwind order 2 No

Scheme D Upwind order 122 Upwind order 1 Yes

Scheme E Upwind order 2 Upwind order 2 mod Yes

Table 4.1: Discretisation schemes for computing hydrostatic flow.

Most of the practical applications in this thesis have been computed with Scheme D. Although

a comprehensive and systematic comparison between the schemes D and E has not been done,

both of them have been used in some practical applications, obtaining similar results. Neverthe-

less, in problems with large water depth gradients, Scheme E is expected to be more accurate,

but also more unstable. Scheme B introduces too much numerical diffusion, which produces too

flattened velocity profiles. Scheme C has proved to work well if there are not steep gradients or

discontinuities in the bed elevation.

The same hydrostatic solution has been computed on a smooth bed with a slope of 25%, in order

to chech how the bed shape affects the results. In this case the spurious oscillations appearing in
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(a) Water surface elevation (b) Unit discharge qx

Figure 4.2: Hydrostatic flow with steep bed gradient.

the free water surface are negligible, and cannot even be distinguish in Figure 4.3(a), although they

exist. This is because the bed is much smoother. However, the oscillations in the unit discharge

are still considerable (Figure 4.3(b)).

(a) Water surface elevation (b) Unit discharge qx

Figure 4.3: Hydrostatic flow with smooth bed gradient.

Many practical situations in hydraulic engineering are defined by a smooth bed slope, specially

in river and coastal engineering. In those cases the non-physical oscillations in the water level will

be small and mixed up with real waves. On the other hand, in the presence of steep bed gradients or

discontinuities in the bed elevation, the velocity oscillations may be larger and also more difficult

to identify.
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4.2.2 Example 2: steady wet-dry front

If the free surface level in example 1 is lowered to 0.5m, the central part of the channel becomes

dry, and a wet-dry front appears in the domain. If Roe’s or van Leer’s schemes are directly applied

at the wet-dry front, the numerical method generates artificial movements of the free surface, even

if the bed slope term is upwinded. Figure 4.4 shows the water surface elevation and unit discharge

computed with and without the wet-dry treatment presented in section 3.9. Only the 3 schemes

which give the exact solution in example 1 have been considered here (Schemes B, D, E). The

solution given by the first order van Leer’s scheme applied directly with no wet-dry front treatment

is also shown.

(a) Water surface elevation (b) Unit discharge qx

Figure 4.4: Hydrostatic flow with wet-dry front.

All the schemes compute the exact solution when the wet-dry condition is used. When no

special treatment of the wet-dry front is done, the dry cells drag the water from the adjacent wet

cells, raising up the water level and originating a water wave. Since at the left boundary the water

depth is not fixed as boundary condition the water level is free to rise. This permits the wave

originated at the wet-dry front to propagate completely until the left boundary. On the other hand,

since the water depth is fixed at the right boundary, a water level gradient appears in that region.
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4.3 Upwind discretisation of a mass source term in 1D channel

flow

4.3.1 The 1D shallow water equations for a rectilinear channel

The 1D shallow water equations for a rectilinear channel can be obtained in a similar way as the 2D

equations (section 2.3). Integrating the 3D shallow water equations over the channel cross section,

and neglecting the dispersion terms which arise due to non-uniformities in the velocity and water

depth, the 1D shallow water equations are obtained as [51]:

∂A

∂t
+

∂Q

∂x
= S1 (4.4)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

∂ξ

∂x
= S2

where A(x, t) is the wet cross section, Q(x, t) is the total water discharge, and S1 and S2 account

for the source terms. If a rectangular section of constant width is assumed, Equation 4.4 can be

simplified as:

∂w(x, t)

∂t
+

∂F(w)

∂x
=
∑

k

Gk(x,w) (4.5)

w =

(
h

q

)
F =

⎛
⎝ q

q2

h
+

gh2

2

⎞
⎠

where the conservative variables are the water depth h(x, t) and the discharge per unit width

q(x, t) = hux. The vectors Gk account for the source terms. In this section the bed friction

and diffusion terms will be neglected, in order to focus only on the discretisation of a mass/sink

source term. Therefore, only the following two sources will be considered:

G1 =

⎛
⎝ 0

−gh
∂zb

∂x

⎞
⎠ G2 =

(
m

0

)

where the mass source m(x) (mass per unit surface) can be defined by any function. The eigenval-

ues λ of the Jacobian matrix of the system of Equations 4.5 are given by:

λ1 =
q

h
+ c λ2 =

q

h
− c (4.6)

where c =
√

gh is the wave celerity.
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4.3.2 A steady state solution

In order to analyse the mass source term, a steady state solution will be used. Following the ideas

of Vázquez-Cendón [144], a constant depth solution is proposed, and the bed shape is calculated

in order to accomplish with this solution. After integration of the mass conservation equation, the

unit discharge is obtained as:

q(x) = q(x0) +

∫ x

x0

m(x) dx (4.7)

Since a solution with constant water depth is sought, the momentum conservation equation can

be simplified as:
1

h

∂q2

∂x
= −gh

∂z

∂x
(4.8)

Integration of Equation 4.8 yields the following expression for the bed elevation:

z(x) − z(x0) = − 1

gh2

(
q2(x) − q2(x0)

)
(4.9)

where the unit discharge q(x) is given by Equation 4.7.

4.3.3 Numerical results

The convenience of upwinding the mass source term has been analysed by Cea et al. in [21],

showing that, if the mass source term is upwinded, the steady solution given by Equation 4.9 is

computed exactly. On the other hand, if a centred discretisation of the mass term is used, an error

of first order in Δx is introduced in the solution. In the following numerical examples the bed

friction has been neglected, and the effective viscosity has been set to zero.

Considering that for the steady solution proposed the water depth is constant in space, when

adding a mass source to the flow, the speed will increase in the longitudinal direction, and so will

do the Froude number. Depending on the boundary conditions and on the mass source, the flow

may be always subcritical, always supercritical, or there might be a change from subcritical to

supercritical flow inside the domain. These three situations were tested using the source terms and

boundary conditions shown in Table 4.2.

Test case mass q0 h0 qL hL Fr0 FrL

1 m = 10x 5.0 — — 5.0 0.143 0.714

2 m = x 5.0 0.5 — — 4.52 6.32

3 m = 2x 1.0 — — — 0.319 1.60

Table 4.2: Mass source terms and boundary conditions tested.

In the first test case the flow is always subcritical. The flow discharge is imposed upstream and

the water depth is imposed downstream. In the second case the flow is supercritical, and thus, the
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discharge and the water depth are fixed upstream. Finally, in the third case there is a change from

subcritical to supercritical flow. In this case only the discharge is fixed upstream, and nothing is

imposed downstream.

Figure 4.5(a) shows the results for the test case 1. A mesh with 20 inner nodes was used at first.

When using the upwind discretisation of the source term the unit discharge is computed exactly,

while a negligible error occurs in the water depth due to the implementation of the boundary

condition. If a centred discretisation of the mass is used, a large error in the water depth appears,

while the unit discharge is still quite accurate.
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Figure 4.5: Mass source term. Test case 1.

In order to see the influence of the mesh size in the solution, a more refined mesh with 100

inner nodes was used. With the refined mesh the error diminishes (Figure 4.5(b)), but still the

results obtained with the centred discretisation in the refined mesh (100 nodes) are worse than

those obtained with the upwind discretisation in the coarse mesh (20 nodes). Similar results have

been obtained for test case 2 (see Figure 4.6) and test case 3.
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Figure 4.6: Mass source term. Test case 2. 20 inner nodes.

4.4 Viscous diffusion term in laminar channel flow

4.4.1 Fully developed laminar channel flow

The fully developed laminar flow in a rectilinear channel with constant bed slope will be used to

test the discretisation of the viscous diffusion source term. In order to avoid the influence of other

terms, the bed friction will be neglected. Since the flow is laminar, the no-slip condition has been

used at the boundary walls.

The fully developed channel flow solution is, by definition, homogeneous in the longitudinal

direction, i.e.:
∂U

∂x
=

∂V

∂x
=

∂h

∂x
= 0 (4.10)

Under this assumption, the transverse velocity V is obtained from the continuity equation as:

∂hV

∂y
= 0 → hV = 0 → V = 0 (4.11)

where it has been considered that the transverse velocity is zero at the walls, and that the water

depth is not zero. Using the homogeneous conditions 4.10 and 4.11, the x and y momentum

equations are simplified as:

0 = −g
∂zb

∂x
+ ν

∂2U

∂y2

∂h

∂y
= 0 (4.12)

Equation 4.12 is a balance between the bed slope term (gravity force) and the viscous shear

stress. The solution of Equation 4.12 with no-slip wall boundary conditions is given by the

parabolic profile:

U(y) =
g

ν

∂zb

∂x

(
y2

2
− Ly

)
(4.13)
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where the channel width is equal to 2L. The maximum velocity, which occurs at the centre line

(Ucl), is equal to:

Ucl = −gL2

2ν

∂zb

∂x
(4.14)

The total discharge is obtained after integration of the mean velocity over the transverse direc-

tion, as:

Q = h

∫ 2L

0

U(y) dy =
4

3
hLUcl (4.15)

4.4.2 Numerical results

The velocity profile given by the exact solution (Equation 4.13) depends on the kinematic viscos-

ity ν, on the bed slope (
∂zb

∂x
), and on the channel width (2L). The following non-dimensional

values have been used in the numerical computations:

ν = 0.1
∂zb

∂x
= −1

g
L = 1 h = 15 (4.16)

With these values the exact solution is given by:

U = 5(2y − y2) Q = 100 (4.17)

The flow is subcritical, with a maximum Froude number of Frmax = 0.41 at the centre-line.

The Reynolds number based on the channel width and on the centre line velocity is Re =
2LUcl

ν
=

100. The numerical computations have been done in a rectilinear channel. A uniform velocity

profile is imposed at the inlet boundary, and the wall boundary layer is allowed to develop as the

viscous stresses propagate from the wall into the fluid, until the velocity profile is fully developed.

The water depth is imposed at the outlet boundary. Assuming that the viscous stresses propagate

from the wall into the fluid in a similar way as they do in a Blasius laminar boundary layer, the

propagation depth δ can be approximated as:

δ ≈
√

4νt ≈
√

4νx

Ucl

(4.18)

which, using the flow parameters given by 4.16, yields:

δ ≈
√

0.08x (4.19)

According to Equation 4.19, the flow should be fully developed at approximately xfd ≈ 12.

The triangular mesh size used in the computations is similar to that one shown in Figure 4.1,

but the mesh size of the triangles in this case is Δx = 0.2, Δy = 0.1, and the length of the domain
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is 20 (based on the former approximation of xfd).

When comparing the numerical and exact solutions we should look not only at the velocity

profile at the end of the channel, but also at the water depth gradient, which should be zero once

the flow is fully developed. A non-zero water depth gradient has the effect of an additional source

in the momentum equations, which is not present in the original equations.

The first and second order upwind schemes of Roe and van Leer have been used in the nu-

merical computations. An upwind discretisation scheme has always been used for the bed slope

term. The diffusion term has been discretised with an upwind as well as a centred scheme, without

finding any significant difference in the results. The second order extension of the upwind schemes

improves the results in a significant way (Figure 4.7). The accuracy of the results obtained with

the hybrid first/second order scheme (order 122 in Figure 4.7), and the fully second order scheme

(order 2) is similar.

(a) Velocity profile U at x = 19. (b) Water depth h

Figure 4.7: Laminar channel flow. Velocity profile and water depth.

Near the entrance of the channel the wall friction is rather large, because a uniform velocity

profile is imposed as upstream boundary condition, which creates a high velocity gradient near the

wall. As the boundary layer develops, the wall friction diminishes until it reaches an equilibrium

value which corresponds to fully developed flow. The higher friction near the entrance is balanced

by an increment in the water depth gradient, as it can be observed in Figure 4.7(b). When the flow

is fully developed the water depth gradient should be zero. It should be noticed that with the first

order scheme a significant water depth gradient remains in the fully developed region, which is

due to the lack of accuracy of the scheme. All the schemes compute rather well the velocity profile

at the end of the channel (Figure 4.7(a)). However, for the same velocity profile, the first order

scheme produces larger shear stresses. This is because the numerical diffusion of the scheme is

larger, and it is the reason why a non-zero water depth gradient is created in order to balance the
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additional shear produced by the scheme.

Figure 4.8 shows the evolution of the velocity profile at different cross sections, as well as

the evolution of the centre-line velocity. Between x = 10 and x = 15 the flow reaches the

fully developed state, which agrees fairly well with the approximation of xfd based on the Blasius

boundary layer.

(a) Velocity profile U (b) Velocity at the centre line Ucl

Figure 4.8: Laminar channel flow. Evolution of the velocity profile. Second order scheme

4.5 Turbulent channel flow

In the previous section the numerical discretisation of the diffusion term has been verified for

laminar channel flow. In this section the turbulence models presented in chapter 2 will be tested

for turbulent channel flow. Since no analytical solution exists for this situation, some LES and

DNS results for fully developed 2D incompressible channel flow will be used for comparison [94].

4.5.1 Fully developed turbulent channel flow

Under the fully developed flow hypothesis in a constant slope rectilinear channel, neglecting the

bed friction, the momentum equations for turbulent flow reduce to:

0 = −g
∂zb

∂x
+

∂

∂y

(
(ν + νt)

∂U

∂y

)
V = 0 h = cte (4.20)
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where the Boussinesq assumption has been used to model the Reynolds stresses. If the ASM is

used, the turbulent diffusion term in Equation 4.20 should be replaced by:

∂

∂y

(
νt

∂U

∂y

)
→ −∂u′v′

∂y
(4.21)

Equation 4.20 is equivalent to the x-momentum equation for 2D incompressible flow in a fully

developed channel boundary layer, with the pressure gradient given by
∂P

∂x
= ρg

∂zb

∂x
. Hence, the

numerical results will be compared with fully developed boundary layer LES and DNS calculations

in a rectilinear channel [94]. The integration of the x-momentum equation (Equation 4.20) over

the channel width (2L) gives the relation between the wall shear stress and the bed slope:

0 = −g
∂zb

∂x
2L +

(
τw

ρ

∣∣∣∣
y=2L

− τw

ρ

∣∣∣∣
y=0

)
(4.22)

Considering the symmetry between the upper and lower walls (τw(y = 2L) = −τw(y = 0)),

the wall friction velocity is given by:

τw

ρ

∣∣∣∣
y=0

= u2
∗ = −gL

∂zb

∂x
(4.23)

Equation 4.23 can be introduced in the x-momentum Equation 4.20 to give:

0 =
u2
∗

L
+

∂

∂y

(
(ν + νt)

∂U

∂y

)
(4.24)

The non-dimensional variables will be defined as:

Ũ =
U

u∗
ν̃t =

νt

u∗L
ỹ =

y

L
(4.25)

Using the dimensional relations 4.25 in Equation 4.24 yields:

0 = 1 +
1

R∗

∂2Ũ

∂ỹ2
+

∂

∂ỹ

(
ν̃t

∂Ũ

∂ỹ

)
(4.26)

where R∗ =
Lu∗
ν

is a Reynolds number based on the wall friction velocity. The non-dimensional

momentum equation depends only on the parameter R∗. The dependence of the original shallow

water equations on the Froude number has been eliminated by assuming a constant water depth.
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4.5.2 A boundary layer code for fully developed turbulent channel flow

The numerical computations have been done with the 2D shallow water equations solver described

in chapter 3, as well as with a 1D boundary layer code for fully developed turbulent channel flow

which solves directly Equation 4.20 coupled with a turbulence model.

The boundary layer code has been used with several turbulence models: a mixing length model

with damping function, a low-Reynolds-number k−ε model by Rahman et al. [112], and a standard

Reynolds Stress Turbulence Model (RSTM). Wall functions were used as boundary condition with

the mixing length and the RSTM, while the low-Reynolds k− ε model was integrated down to the

wall using the no-slip condition. Since the boundary layer code solves a diffusion equation, it is

not necessary to use an upwind scheme. Instead a second order centred finite volume scheme was

used.

The 2D shallow water code has been used with the mixing length model, the standard 2D k− ε

model and the 2D algebraic stress model. In all the cases a wall function approach was used at the

wall.

The results given by a boundary layer code are difficult to improve with Navier-Stokes mod-

els [126]. The 1D boundary layer code is expected to perform better than the 2D shallow water

code for several reasons: (1) it solves the exact diffusion equation, and therefore, no error is

introduced in the discretisation of the convective flux, which is exactly zero; (2) the numerical

mesh is exactly aligned with the velocity gradient, avoiding discretisation errors due to the non-

orthogonality of the cell faces and the flux in unstructured meshes; (3) it is much easier to obtain a

higher order of accuracy in the spatial discretisation; (4) the numerical scheme is more stable.

The same number of nodes in the transverse direction have been used in the boundary layer

and shallow water computations. Only half part of the channel has been modelled with the 1D

boundary layer code, applying a symmetry boundary condition at the centre line. The symmetry

boundary condition sets to zero all the derivatives in the transverse direction at the centre line of

the channel, except for the Reynolds stress u′v′, which is fixed to zero:

∂U

∂y

∣∣∣∣
cl

= 0
∂ε

∂y

∣∣∣∣
cl

= 0
∂k

∂y

∣∣∣∣
cl

= 0 (4.27)

∂u′2

∂y

∣∣∣∣∣
cl

= 0
∂v′2

∂y

∣∣∣∣∣
cl

= 0 u′v′∣∣
cl

= 0

where the subindex cl refers to the centre line of the channel.

4.5.3 Numerical results

The numerical results will be compared with LES data obtained for a Reynolds number of R∗ =

2000, and DNS data for a Reynolds number of R∗ = 395. For these flow conditions the mean
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velocity over a cross section is around 20u∗, which gives a Reynolds number based on the mean

velocity equal to RU ≈ 40000 for R∗ = 2000, and RU ≈ 8000 for R∗ = 395.

The numerical computations have been done with the following non-dimensional parameters:

L = 1 u∗ = 1 ν =
1

R∗
(4.28)

According to Equation 4.23, the bed slope is fixed to a constant value of:

∂zb

∂x
= − u2

∗
gL

= −1

g
(4.29)

The governing Equation 4.20 does not depend on the water depth, since its value is constant in

fully developed conditions. In the numerical calculations the water depth is given by the boundary

conditions. Depending on its value the flow may be subcritical or supercritical. Several water

depths were used in the computations in order to verify its possible influence on the results. No

significant differences were found in the solution.

The value of the velocity imposed as upstream boundary condition has been obtained from

integration of the LES/DNS velocity profiles as:

Uin =
Q

2L
=

h

2L

∫ 2L

0

U(y) dy (4.30)

where U(y) is the velocity profile given by the LES/DNS calculations.

Numerical mesh

A uniform velocity profile has been used as upstream boundary condition, in order to allow the

turbulent boundary layer to develop along the channel. This is a rather slow process, and there-

fore, the channel must be long enough. Usually it is assumed that, depending on the geometry, it

takes between 100 and 200 diameters to achieve a fully developed turbulent channel flow profile.

Based on this approximation, a computational domain with a length of 200L has been used in the

numerical simulations. The triangular mesh size is Δx ≈ 1.5, Δy ≈ 0.05. The distance from the

first inner node to the wall is approximately y+ ≈ 50.

Computations with the mixing length turbulence model

In order to reduce the shallow water mixing length model to the correspondent 2D model, the

bed friction has been neglected, and the water depth has been assumed to be large enough so

that the turbulent length scale is given by the wall distance rather than being given by the water

depth. Under these assumptions, in a fully developed boundary layer the mixing length model
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(Equation 2.69) reduces to:

νt = l2s
∂U

∂y
ls = κy (4.31)

The simplicity of the model does not allow it to account properly for the development of the

boundary layer, since it assumes that turbulence is in an equilibrium state. The mixing length

model, as formulated in Equation 4.31, gives rather poor results because it predicts too large val-

ues for the eddy viscosity, which flattens too much the velocity profile. This problem is generally

solved by using damping and limiting functions [34], which limit the value of the turbulent length

scale ls. In order to show the improvement obtained in the numerical results, the following defini-

tion of the turbulent length scale has been used:

ls = min (κy, 0.09L) (4.32)

It should be noted that the value of 0.09 is specific for plane channel flow [148], and it is not a

general value. In addition, in shallow water flows the turbulent length scale is usually given by the

water depth rather than by the wall distance. For this reason this kind of limits can only be used

in very specific flow configurations. Nevertheless, it will be used in this chapter in order to verify

the numerical code. Figure 4.9(a) shows the comparison between the velocity profile obtained

with the mixing length model, with and without damping function. Both the first and second order

upwind schemes have been used in order to show the need of using a second order discretisation to

obtain accurate results. It should be noticed in Figure 4.9(b) that, when using the damping given

by Equation 4.32, the eddy viscosity is reduced almost by a factor 3. Still, the first order upwind

scheme with damping gives a more flattened velocity profile than the second order upwind scheme

without damping. This means that the numerical diffusion given by the first order scheme is larger

than the real turbulent diffusion.

The wall distance of the first inner node is y+ ≈ 53, which lies inside the logarithmic region. It

is interesting to show the longitudinal profile of the water depth, as well as the evolution of the wall

friction velocity over the length of the channel (Figure 4.10). As it has been noticed in section 4.4

for laminar channel flow, when using the first order upwind scheme, an almost constant water

depth gradient appears along the channel (Figure 4.10(a)), which is not physically correct. This

water depth gradient introduces an additional source term in the x-momentum equation, which is

balanced by an increase in the wall friction, as it is shown in the longitudinal profile of the wall

friction velocity (Figure 4.10(b)). Better results are obtained with the second order upwind scheme,

which gives a more accurate wall friction velocity.
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(a) Velocity profile U
u∗

. (b) Eddy viscosity νt.

Figure 4.9: Turbulent channel flow. Velocity and eddy viscosity profile. Mixing length model with and

without damping. R∗ = 2000. 2D-SWE and boundary layer code (BLC).

(a) Water depth h. (b) Wall friction velocity u∗.

Figure 4.10: Turbulent channel flow. Longitudinal profiles. Mixing length model with damping, and k − ε
model. R∗ = 2000.

Computations with the k − ε turbulence model

When using the mixing length model to compute the turbulent channel flow, a specific damping

function is needed in order to obtain accurate results. With the k−ε model good results are obtained

without using any damping function. Always under the assumptions given by Equation 4.10, the
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transport equations of the k − ε model can be simplified as:

0 =
∂

∂y

(
(ν +

νt

σk

)
∂k

∂y

)
+ νt

(
∂U

∂y

)2

− ε (4.33)

0 =
∂

∂y

(
(ν +

νt

σε

)
∂ε

∂y

)
+ c1ε

ε

k
νt

(
∂U

∂y

)2

− c2ε
ε2

k

νt = cμ
k2

ε

Equations 4.33 are a balance between production, dissipation and diffusion of turbulence. The

turbulent kinetic energy is generated near the wall, where the largest velocity gradients occur. From

the walls, it diffuses to the centre of the channel.

(a) R∗ = 2000. (b) R∗ = 395.

Figure 4.11: Turbulent channel flow. Velocity profiles with several turbulence models. 2D-SWE and bound-

ary layer code (BLC).

The second order upwind scheme has been used in all the computations. The velocity results

can be considered satisfactory (Figure 4.11), with a degree of accuracy similar to the boundary

layer code with the standard RSTM. Concerning the turbulent variables, the k − ε model gives

acceptable results (Figure 4.12). However, the prediction of the Reynolds stresses is, as it could

be expected, not accurate. Even the 1D boundary layer results show a considerable disagreement

with the LES values.

Computations with the ASM

The depth averaged algebraic stress model for shallow water flows proposed in chapter 2 reduces

to the 2D-ASM when the bed friction coefficient vanishes. The ASM can be considered as an

extension of the k − ε model. It is not computationally more expensive, since it is not necessary
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(a) k.R∗ = 2000. (b) u′2.R∗ = 2000. (c) v′2.R∗ = 2000.

(d) k.R∗ = 395 (e) u′2.R∗ = 395. (f) v′2.R∗ = 395.

Figure 4.12: Turbulent channel flow. Turbulent variables with ASM and k − ε models. 2D-SWE and

boundary layer code (BLC).

to solve any additional differential equation, but it is expected to be more unstable than the k − ε

model.

The mean velocity profile obtained with the ASM is similar to that one obtained with the

k − ε model (Figure 4.11). Similar results are also obtained for the turbulent kinetic energy (Fig-

ure 4.12(a,d)). Some differences appear in the Reynolds stresses, which are slightly more accurate

with the ASM (Figure 4.12(b,c,e,f)). This is due to the assumption of isotropic eddy viscosity used

in the k − ε model. The ASM gives a higher degree of anisotropy between the turbulent stresses.
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Chapter 5

Shallow waves generated by bed and
boundary movements

5.1 Introduction

Natural hazards such as tsunamis, avalanches or hill slope sliding in reservoirs have been studied

with great interest in the last decades. One of the first researchers to carry out laboratory studies

of gravity waves generated by the movement of submerged bodies was Wiegel in the fifties [146].

He performed one-dimensional experiments in a rectilinear flume and studied the properties of the

waves generated (period, maximum wave height, ...) relating them with the characteristics of the

generation movement (shape and dimensions of the submerged body, velocity, ...). These experi-

ments have been carried out after Wiegel by other researchers [145, 58]. Not only the generation

process, but also the runup of long waves on sloping surfaces have been studied experimentally in

order to estimate the overtopping rate on coastal structures [36].

In the last years many numerical models have been developed in order to simulate the propaga-

tion and runup of long waves on the coast line [71, 70, 83, 82, 60, 61, 41]. The main advantage of

using numerical models in the design of coastal structures is that they can be easily and rapidly ap-

plied to different geometries and wave conditions. After studying the overtopping rate of random

waves on sloping seawalls, Dodd [40] concluded that solving the shallow water equations gives

much better estimations than using empirical formulae. On the other hand, experimental tests are

absolutely necessary in order to validate and define the limitations of the numerical models.

Some numerical models solve the 2D Navier-Stokes equations on a vertical plane in order to

simulate solitary waves in a 1D flume [41, 82]. However, due to computer power requirements,

these models are still not commonly used in 3D practical computations. For this reason, numerical

models which solve the depth averaged shallow water equations with an adequate treatment of

the coastline, where a wet-dry transition occurs, are much more common. Several studies have
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been made in order to assess the performance of depth averaged models in long wave simulations

[61, 60, 83, 71]. The accuracy of the results depends on the degree to which the shallow water

approximations are fulfilled. Nevertheless, rather satisfactory results have been obtained even in

situations where the shallow water hypotheses were expected to give poor results [60, 61].

In this chapter the 1D depth averaged shallow water equations are used to model the gener-

ation, propagation and reflection of shallow waves generated by bed and boundary movements.

Experimental tests in a 1D flume have been done in order to compare with the numerical results.

The wave generation in the experiments was achieved by the movement of a paddle with several

slopes. An overtopping vertical wall was used as the reflection condition.

5.2 Experimental tests

5.2.1 Experimental procedure

The experimental tests were carried out in a 60cm wide by 15m long flume at the CITEEC’s (Cen-

tro de Innovación Tecnolóxica en Edificación e Enxeñería Civil, University of A Coruña, Spain)

hydraulics laboratory. The experimental results have been used to analyse the wave generation as

well as the runup and reflection on the vertical overtopping wall.

The waves were generated by the horizontal movement of a slanted paddle, which was located

at the beginning of the channel (Figure 5.1). The maximum paddle displacement was 0.59m, and

the maximum speed 0.59m/s. The paddle moves forward at constant speed, and stays still after the

forward movement has finished. The initial paddle acceleration, until it reaches a constant speed,

as well as the final paddle deceleration, are fast enough to avoid considering them in the simulation.

Thus, for modelling purposes it can be assumed that the paddle moves with constant velocity during

the whole motion. Once generated, the wave propagates until it reaches a vertical wall of 36cm

height. Depending on the initial water depth, on the paddle slope, and on the paddle speed, the wall

may be overtopped or not by the wave. The water depth was measured at 5 locations (Table 5.1 and

Figure 5.1) with conductivity-based depth probes (DHI Wave Gauge Type 202). The sampling rate

of the gauges was set to 100Hz. All the wave gauges were calibrated before each experimental

test. The measurement error of the wave gauges is 0.7%. In order to verify the uncertainty in

the measurements of the free surface elevation, every test was made twice, and no significant

differences were observed in the experimental data (the difference in the free surface elevation was

always smaller than 1%, i.e. the same order of magnitude as the wave gauge precision).

Four different water depths were used in the experiments: 15cm, 20cm, 25cm and 30cm. For

each water depth, three different paddle slopes were used (45o, 60o and 90o) combined with two

different paddle movements, which will be addressed as slow movement and fast movement here-

after (Table 5.2). The origin of coordinates is defined as the point where the paddle intersects the
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bottom of the flume once the generation movement has finished. In the tests in which the paddle

slope is 45o and 60o, the wave gauge S1 was placed at the origin of coordinates. In the tests in

which the paddle is vertical (90o), the gauge S1 was attached to the paddle.

Figure 5.1: Wave generation and runup on a vertical wall. Experimental configuration.

S1 S2 S3 S4 S5 Vertical wall

45o and 60o paddles 0.00m 0.50m 1.00m 2.00m 3.00m 3.01m
90o paddle Generation paddle 0.50m 1.00m 2.00m 3.00m 3.01m

Table 5.1: Position of the wave gauges in the experimental tests (see Figure 5.1).

Slow movement Fast movement

Amplitude 0.58m 0.29m
Velocity 0.29m/s 0.58m/s

Table 5.2: Movement of the generation paddle.

5.2.2 Characteristics of the waves generated

The height and period of the waves generated by both the slow and the fast paddle movements are

defined in Table 5.3, Table 5.4 and Figure 5.2. The shallow water theory has been used to evaluate

an approximated wave celerity Csw as:

Csw =

√
g

(
d +

Hmax,1 + Hmax,4

2

)
(5.1)

where g is the gravity acceleration, d is the initial water depth, and Hmax,1 and Hmax,4 are the wave

heights measured at the gauges S1 and S4. The experimental wave celerity Cexp is computed from

the data registered by the wave gauges S1 and S4 as:

Cexp =
x4 − x1

t4 − t1
(5.2)

where x1 and x4 are the position of the wave gauges S1 and S4, and t1 and t4 are the times at which

the maximum water level is registered at the gauges S1 and S4. The characteristic wave length L
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is defined as L = CswT , where Csw is the wave celerity given by Equation 5.1, and T is the wave

period, as defined in Figure 5.2. With these values, the ratio between the vertical and horizontal

length scales can be evaluated as
d

L
. It should be noticed that the shallow water approximation

assumes a separation of the horizontal and vertical scales, i.e. a ratio
d

L
much smaller than 1.

Figure 5.2: Wave height and period.

The ratio between the non-linear and dispersive effects is given by the Ursell number, which is

defined as:

Ur =
gHmaxT

2

2d2
(5.3)

The Ursell number is widely used in order to establish the dispersive character of waves. The

smaller the Ursell number is, the more important the dispersive effects are, and the sooner they

will appear. Dispersive waves are mainly deep waves, which travel with a velocity which depends

on the wave period. Deep water waves are not affected by the bed surface, and the velocity profile

is not uniform over the water depth. Hence, the role of the dispersion terms, which are neglected

in the depth averaged model (see section 2.3.4 and Equation 2.28), in the momentum equations is

important. On the other hand, shallow waves (which are non-dispersive) are strongly influenced

by the bed surface, travelling with a velocity which depends only on the water depth. The velocity

profile is rather uniform in the vertical direction, and the dispersion terms are much less important

than in the deep waves. Since the depth averaged model does not account for the dispersive effects,

and it assumes a separation between the vertical and horizontal length scales, the accuracy of

the numerical results is expected to deteriorate as the Ursell number diminishes and the ratio
d

L
increases.

The paddle speed in the fast movement is 0.58m/s, with an amplitude of 0.29m. Table 5.3

shows the properties of the waves generated by the fast movement. The paddle speed in the slow

movement is 0.29m/s, with an amplitude of 0.58m. The properties of the waves generated by the

slow movement are shown in Table 5.4. The Ursell number is much higher in the slow movement

than in the fast movement. This is because the length of the slow movement (2s) is larger than the

length of the fast movement (0.5s), and therefore, the wave period of the former one is larger.

The less the water depth is, the larger the Ursell number is. In all the tests the Ursell number
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Paddle slope d(m) T (s) L(m) Hmax(m)
d

L
Ur Cexp(m/s) Csw(m/s)

Csw

Cexp

45o 0.15 0.74 1.15 0.095 0.13 11.3 1.54 1.55 1.01

45o 0.20 0.82 1.41 0.102 0.14 8.4 1.65 1.71 1.03

45o 0.25 0.89 1.66 0.107 0.15 6.6 1.71 1.85 1.08

45o 0.30 0.97 1.95 0.113 0.15 5.8 1.77 1.99 1.12

60o 0.15 0.59 0.93 0.105 0.16 8.0 1.60 1.58 0.99

60o 0.20 0.65 1.15 0.119 0.17 6.2 1.67 1.74 1.05

60o 0.25 0.72 1.38 0.127 0.18 5.2 1.74 1.89 1.09

60o 0.30 0.74 1.53 0.135 0.20 4.0 1.83 2.03 1.10

90o 0.15 0.59 0.97 0.123 0.15 9.3 1.61 1.57 0.98

90o 0.20 0.59 1.08 0.140 0.18 6.0 1.69 1.79 1.05

90o 0.25 0.60 1.20 0.159 0.21 4.5 1.72 1.95 1.13

90o 0.30 0.56 1.20 0.172 0.25 2.9 1.80 2.09 1.16

Table 5.3: Properties of the waves generated by the fast movement.

is larger than 1, and therefore, the non-linear effects are expected to dominate over the dispersive

effects in the wave propagation. Nonetheless, in some of the tests the Ursell number is close to 1,

and thus, the importance of the dispersive effects increases. The ratio
d

L
is of the order 0.1, which

might be considered the upper limit for shallow water waves theory. The wave height is quite large,

reaching values of 50% the water depth in some cases. Hence, the non-linear effects are important

in the wave propagation. Due to the dispersive character of the waves, which is not considered

in Equation 5.1, the experimental wave celerity Cexp is somewhat smaller than the approximated

celerity Csw. As the Ursell number diminishes the dispersive effects become more important in the

propagation process, and the difference between Csw and Cexp increases.

Paddle slope d(m) T (s) L(m) Hmax(m)
d

L
Ur Cexp(m/s) Csw(m/s)

Csw

Cexp

45o 0.15 2.32 3.25 0.050 0.04 58.6 1.36 1.41 1.04

45o 0.20 2.39 3.77 0.054 0.05 37.8 1.50 1.59 1.06

45o 0.25 2.47 4.31 0.060 0.06 28.7 1.67 1.75 1.05

45o 0.30 2.52 4.76 0.064 0.06 22.1 1.74 1.90 1.09

60o 0.15 2.20 3.10 0.053 0.05 55.9 1.35 1.42 1.05

60o 0.20 2.23 3.55 0.058 0.06 35.3 1.49 1.59 1.07

60o 0.25 2.27 3.99 0.065 0.06 26.3 1.63 1.76 1.08

60o 0.30 2.30 4.37 0.068 0.07 19.6 1.69 1.90 1.12

90o 0.15 2.14 3.01 0.052 0.05 51.9 1.39 1.42 1.02

90o 0.20 2.14 3.41 0.059 0.06 33.1 1.49 1.60 1.08

90o 0.25 2.14 3.77 0.067 0.07 24.1 1.60 1.77 1.11

90o 0.30 2.14 4.09 0.073 0.08 18.2 1.72 1.91 1.11

Table 5.4: Properties of the waves generated by the slow movement.
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5.3 Numerical results and experimental validation

5.3.1 Model equations

The experimental tests have been modelled with the 1D depth averaged shallow water equations.

The Manning’s formula has been used to compute the bed friction, assuming a Manning’s coef-

ficient of 0.015s/m1/3. Nonetheless, the bed friction has very little influence on the numerical

results, which are very insensitive to the Manning’s number.

The turbulence level is very small in all the experiments, since there is not any important source

of turbulent energy. In the numerical simulations made in this chapter it has been considered that

the turbulent diffusion is not significant. This is the usual approach made when modelling the

propagation of long shallow waves with the depth averaged shallow water equations [15, 19, 61,

40]. Hence, the equations solved are given by:

∂h

∂t
+

∂q

∂x
= 0 (5.4)

∂q

∂t
+

∂

∂x

(
q2

h
+

gh2

2

)
= −gh

∂zb

∂x
− gh

n2q2

h10/3

5.3.2 Wave generation

Two different forces appear when generating a wave by the movement of a paddle: the friction

between the paddle and the water, and a pressure force perpendicular to the paddle. The friction

between the paddle and the water produces a shear stress in the same direction as the bed slope.

The magnitude of the shear stress depends directly on the relative velocity between the paddle and

the water, on the paddle rugosity, and on the water depth.

(a) Slanted paddle. (b) Vertical paddle.

Figure 5.3: Wave generation by the paddle movement.

The horizontal projection of the shear stress produced by the paddle movement can be ex-

pressed as:

τp,h = cf [(Vp − Vf ) cos α]2 cos α (5.5)
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where τp,h is the horizontal projection of the shear stress produced by the paddle movement, α is

the angle defining the paddle slope, Vp is the paddle velocity, Vf is the horizontal velocity of the

water, and cf is the bed friction coefficient. The bed stress given by Equation 5.5 is equivalent to

the force produced by a bed slope given by:

n2(Vp − Vf )
2 cos2 α

h4/3
cos α (5.6)

where the Manning’s formula has been used to evaluate the bed friction coefficient. The Manning’s

coefficient of the flume is approximately 0.015s/m1/3, the maximum velocity of the paddle in

the experiments is 0.58m/s, the minimum paddle angle is 45o, and the minimum water depth is

0.15m. With these values the largest bed friction is obtained, which, according to Equation 5.6,

is equivalent to a bed slope of 1.79 10−4 (0.01o). This value is negligible in the wave generation

process, and therefore, it will not be considered in the numerical simulations.

The numerical scheme used to simulate the wave generation depends on the paddle slope.

With the 45o and 60o paddles (Figure 5.3(a)) a bed movement is used to generate the wave. In this

way it is not necessary to impose any special moving boundary condition. Instead, the wet-dry

condition participates directly in the generation process. When simulating the wave generation

by a vertical paddle (90o) this technique is no longer valid, because it produces instabilities and

numerical oscillations due to the discontinuity in the bed elevation. Numerical instabilities due

to the large bed slope also appear with the 60o slope if a coarse mesh is used. In order to avoid

numerical instabilities it has been necessary to use a 2cm grid with the 60o slope, instead of the

4cm grid used with the 45o slope.

When the generation paddle is vertical (90o) there is always a point where a discontinuity in the

bed elevation occurs, and therefore, it is necessary to use a moving boundary condition. In order to

do so, the effect produced by the horizontal movement of a vertical wall has been considered to be

physically equivalent to an imposed horizontal unit discharge (Figure 5.4). During the generation

process the boundary moves with the paddle. Meanwhile the paddle moves inside the cell Ci

(Figure 5.4), the unit discharge is imposed at the boundary Xi+1/2 as:

qn+1
c =

Xn+1
w − Xn

w

tn+1 − tn
hA (5.7)

where qn+1
c is the imposed flux at the boundary Xi+1/2, Xn

w is the position of the paddle at the

time step tn, and hA is equal to the water depth in the cell Ci when the paddle gets into it. The

value of hA in Equation 5.7 is kept constant meanwhile the paddle is inside the cell Ci. When

the paddle moves into the next cell (Ci+1), the new value hA is taken equal to hi+1 at that precise

time step. With this scheme the volume of water introduced in the domain meanwhile the paddle

is moving inside the cell Ci, is equal to the volume of water in that cell when the paddle gets into
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Figure 5.4: Boundary condition for the wave generation by a vertical paddle.

it, achieving in this way the conservation of mass. This formulation is only valid when simulating

moving boundaries which are not overtopped by the generated wave.

A rough approximation of the wave generated by the movement of a vertical wall with con-

stant velocity can be obtained applying the conservation of mass and momentum to the control

volume AB in Figure 5.3(b), which yields:

h1V1 − h2V2 = (h1 − h2)Vs (5.8)

1

2
gh2

1 + h1V
2
1 − 1

2
gh2

2 − h2V
2
2 = (h1V1 − h2V2)Vs

The subindices 1 and 2 in Figure 5.3(b) and in Equation 5.8 refer respectively to variables at

the left and right sides of the wave front. The only unknown variables in Equation 5.8 are the speed

of the wave front Vs and the water depth h1. The velocity V1 is assumed to be equal to the paddle

velocity, V2 is zero (the water is still before the experiment starts), and h2 is the initial water depth.

A grid size of 4cm was used in the tests with the 45o and 90o paddles, while the grid size was

reduced to 2cm in the simulations with the 60o paddle for the reasons exposed above. As it is

shown in Figures 5.5(a,b,c), during the slow paddle movement the water surface oscillates around

an equilibrium level. These oscillations, which are mainly produced by vertical accelerations, are

larger as the paddle slope increases. The numerical model is not able to resolve them because the

vertical accelerations are neglected in the shallow water approximation. However, the numerical

scheme predicts fairly well the equilibrium water depth (Table 5.5 and Figure 5.5). The wave height

approximation given by Equation 5.8 (H5.8 in Table 5.5) also agrees well with the experimental

data.

It should be noticed from Figure 5.5 and Table 5.5 that the dependence of the wave height

predicted by the model on the paddle slope is low. The wave height depends mainly on the initial

water depth and on the paddle speed. It should also be remarked that in Figures 5.5(a) and 5.5(b)

the wave was generated by a bed movement, while in Figure 5.5(c) it was generated by the moving

boundary condition (Equation 5.7). The wave height predicted by both mechanisms is the same.
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(a) Paddle 45o. Slow movement. (b) Paddle 60o. Slow movement. (c) Paddle 90o. Slow movement.

(d) Paddle 45o. Fast movement. (e) Paddle 60o. Fast movement. (f) Paddle 90o. Fast movement.

Figure 5.5: Wave generation. Experimental and numerical results at gauge S1. d=0.25m.

Paddle slope d(m) Hexp(m) Hnum(m) H5.8(m)
45o 0.15 0.0395 0.0390 -

45o 0.20 0.0456 0.0440 -

45o 0.25 0.0520 0.0500 -

45o 0.30 0.0562 0.0520 -

60o 0.15 0.0385 0.0390 -

60o 0.20 0.0442 0.0440 -

60o 0.25 0.0501 0.0500 -

60o 0.30 0.0535 0.0540 -

90o 0.15 0.0385 0.0390 0.0378

90o 0.20 0.0420 0.0430 0.0434

90o 0.25 0.0475 0.0490 0.0483

90o 0.30 0.0520 0.0530 0.0527

Table 5.5: Equilibrium wave height. Slow movement.

The length of the fast movement is not large enough to achieve an equilibrium wave height.

Nonetheless, it seems from Figure 5.5(f) that the equilibrium water depth given by the model

is approximately 0.35m. The effects of vertical accelerations are much larger in this case. For

this reason the maximum wave height produced by the vertical paddle with the fast movement is

underpredicted by the numerical model.
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5.3.3 Wave propagation and runup

Figures 5.6 and 5.7 show the numerical and experimental results over 10s of simulation for several

tests. During this time the wave is generated, reflected in the vertical wall, and reflected again in

the generation paddle. The vertical wall is modelled by a discontinuity in the bed elevation, which

allows to account easily for the overtopping waves. For this reason, the wet-dry treatment plays a

very important role in the reflection of the wave.

The experimental water surface elevation oscillates around the numerical predictions (Fig-

ures 5.6 and 5.7). Nonetheless, the model predicts fairly well the mean water surface level,

specially considering that errors below 20% are inside the admissible limits in the simulation of

solitary waves [72].

(a) Paddle 45o. d=0.25m. Gauge S1. (b) Paddle 45o. d=0.30m. Gauge S3.

(c) Paddle 60o. d=0.30m. Gauge S2. (d) Paddle 90o. d=0.30m. Gauge S2.

Figure 5.6: Experimental and numerical results in the slow movement.

In order to verify that there is not a trend in the numerical results, an error is defined considering

the total area between the experimental and numerical curves as:

error =
n∑

i=1

(hexp
i − hnum

i )Δt

tmaxHmax

(5.9)

144



CHAPTER 5. SHALLOW WAVES GENERATED BY BED AND BOUNDARY MOVEMENTS

(a) Paddle 45o. d=0.30m. Gauge S2. (b) Paddle 45o. d=0.30m. Gauge S5.

(c) Paddle 60o. d=0.30m. Gauge S2. (d) Paddle 90o. d=0.20m. Gauge S4.

Figure 5.7: Experimental and numerical results in the fast movement.

where n is the number of experimental samples, hexp
i is the experimental water depth, hnum

i is the

numerical water depth, Δt is the time step between two consecutive samples, tmax is the total time

of simulation (10s), and Hmax is the initial wave height as defined in Figure 5.2.

The error given by Equation 5.9 does not increase monotonically in time, as it is shown in

Figures 5.8 and 5.9 for several tests. This is because a depth averaged model is able to compute

the time evolution of the mean free surface level, but not the high frequency oscillations which

are mainly produced by vertical accelerations and are subject to dispersion effects (Figure 5.6).

Tables 5.6 and 5.7 show the error at each wave gauge after 10s of simulation, which is in most

cases smaller than 5%, and only in 5 cases out of 120 exceeds 10%.

Figure 5.10 shows the water surface elevation computed by the model in the whole flume

at several time steps, revealing a satisfactory global agreement with the experimental results. It

should be noticed how the wave overtops the wall without originating any spurious oscillation

(Figures 5.10(a,b,d)), and how it is reflected without any numerical diffusion of the water front

from the wet to the dry cells (Figure 5.10(c)).

145



5.3. NUMERICAL RESULTS AND EXPERIMENTAL VALIDATION

(a) Paddle 45o. d=0.20m. Gauge S1. (b) Paddle 45o. d=0.20m. Gauge S5.

(c) Paddle 60o. d=0.30m. Gauge S1. (d) Paddle 60o. d=0.30m. Gauge S2.

Figure 5.8: Error vs. time, as defined in Equation 5.9, in the fast movement.

(a) Paddle 45o. d=0.20m. Gauge S1. (b) Paddle 45o. d=0.20m. Gauge S5.

(c) Paddle 60o. d=0.30m. Gauge S1. (d) Paddle 60o. d=0.30m. Gauge S2.

Figure 5.9: Error vs. time, as defined in Equation 5.9, in the slow movement.
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Paddle slope d(m) Gauge S1 Gauge S2 Gauge S3 Gauge S4 Gauge S5

45o 0.15 0.025 0.047 0.007 0.027 0.005

45o 0.20 0.011 0.001 0.015 0.021 0.007

45o 0.25 0.121 0.018 0.031 0.027 0.022

45o 0.30 0.141 0.005 0.021 0.055 0.006

60o 0.15 0.051 0.042 0.030 0.012 0.023

60o 0.20 0.077 0.060 0.050 0.059 0.069

60o 0.25 0.037 0.004 0.021 0.024 0.002

60o 0.30 0.024 0.010 0.037 0.025 0.001

90o 0.15 0.012 0.005 0.003 0.001 0.005

90o 0.20 0.005 0.023 0.021 0.014 0.002

90o 0.25 0.011 0.024 0.025 0.019 0.001

90o 0.30 0.016 0.030 0.034 0.023 0.002

Table 5.6: Error (see Equation 5.9) in the fast movement at t = 10s.

Paddle slope d(m) Gauge S1 Gauge S2 Gauge S3 Gauge S4 Gauge S5

45o 0.15 0.020 0.017 0.052 0.035 0.032

45o 0.20 0.003 0.035 0.070 0.041 0.018

45o 0.25 0.044 0.034 0.078 0.091 0.058

45o 0.30 0.025 0.125 0.086 0.180 0.091

60o 0.15 0.189 0.053 0.077 0.064 0.047

60o 0.20 0.210 0.010 0.034 0.045 0.017

60o 0.25 0.020 0.028 0.058 0.059 0.079

60o 0.30 0.005 0.029 0.074 0.097 0.072

90o 0.15 0.036 0.016 0.018 0.018 0.015

90o 0.20 0.025 0.021 0.013 0.042 0.020

90o 0.25 0.018 0.013 0.040 0.037 0.016

90o 0.30 0.023 0.019 0.041 0.062 0.041

Table 5.7: Error (see Equation 5.9) in the slow movement at t = 10s.

5.4 Concluding remarks

The treatment of the wet-dry fronts presented in section 3.9 has been used in this chapter to model

the reflection and overtopping of long waves on a vertical wall, as well as the wave generation by

the movement of a paddle.

In order to simulate the generation of a wave by the movement of a slanted surface, two dif-

ferent schemes have been proposed depending on the slope of the surface. When the wave is

generated by a vertical wall, a moving boundary condition for this particular case is used. The

generation of waves by a slanted surface is achieved by a bed movement, using the wet-dry con-

dition. The performance of both schemes is satisfactory. The differences observed between the

experimental and the numerical results are mainly due to the existence of important vertical ac-

celerations, specially near the vertical walls, which invalidate the hydrostatic pressure hypothesis

made in the shallow water models. The numerical model is able to predict the mean movement
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(a) Paddle 45o. d=0.30m. (b) Paddle 60o. d=0.30m.

(c) Paddle 60o. d=0.25m. (d) Paddle 90o. d=0.30m.

Figure 5.10: Water surface elevation at several time steps in the slow movement. t=2.5s. Continuous line:

numerical predictions. Circles: experimental results.

of the free surface, but it fails to simulate the oscillations around this mean level. This should be

considered when analysing the numerical results given by the shallow water equations, because

the model underpredicts the maximum runup on very steep walls, which is an important parameter

in the design of dams, bridges or similar civil structures.
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Chapter 6

Tidal flow in the Crouch estuary

6.1 Introduction

The hydrodynamic modelling of estuaries is of great importance in order to understand, predict and

control the physical processes taking place in coastal regions. Not only an adequate representation

of the mean velocity and water depth fields is desired, but also a good estimation of the turbulent

kinetic energy, which plays a crucial role in the transport and mixing processes of pollutants and

heat. Kawanisi [69] studied the shallow flow in a tidal estuary and pointed out the importance of

the turbulence structure in the transport processes. Turbulence has also a great influence on the bed

load sediment transport in rivers. The intermittent and streaky pattern in the sediment motion is

apparently caused by the turbulent bursting processes near the bed wall. Sumer et al. [130] found

that for a constant mean bed shear stress, the sediment motion depends on the near-bed turbulence,

with a very strong correlation. For increments of just 20% in the turbulent kinetic energy, the

sediment transport can increase up to 600%.

In this chapter the tidal flow in the Crouch estuary (Essex, England) is computed with the depth

averaged shallow water equations for a time period of 5 days. The Crouch estuary is characterised

by a rather thin and long shape, with a longitudinal extension of around 25Km, and a width

of approximately 1Km at the mouth (Figure 6.1). The mouth of the estuary is located in the

North Sea, approximately 15Km north of the River Thames. 5Km upstream from the mouth the

estuary bifurcates into the River Crouch, which extends 20 additional kilometres upstream from

the bifurcation, and the River Roach, which extends around 10Km. The estuary has extensive

flooding and recession areas in the lateral margins, which wet and dry with each tidal cycle and

need to be modelled with a suitable wet-dry condition. In the south part of the estuary there are

two large internal islands defined by vertical walls which keep them always dry. In the upper

part of the estuary, between the coordinates x = 588000m and x = 591500m (UK Ordnance

Survey Coordinates), there is a large island (Bridgemarsh island) which dries out at low tide and

completely floods at high tide.
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The external fresh water contribution to the flow in the whole estuary is scarce and negligible

when compared to the tidal flow [150]. Hence, the flow in the estuary is completely driven by the

tidal waves at the mouth entrance. The tidal range at the mouth varies between 3m (neap tide) and

5m (spring tide), with maximum velocities of approximately 1.5m/s. The bed of the estuary in

the sub-tidal and inter-tidal channels is formed by muddy sediments. The estuary has also several

marsh regions, usually in areas which are above the mean spring high water level.

The large spatial domain through which the estuary extends, as well as the fact of being driven

by tidal cycles, makes it necessary to solve an unsteady problem over a large temporal and spatial

domain. Since the fresh water contribution in the estuary flow is scarce, the gradients of salinity

are negligible [150] and do not need to be taken into account in the numerical modelling. Hence,

using a one-layer depth averaged shallow water model is a very reasonable option.

Three depth averaged RANS turbulence models, the mixing length model (ML), the k − ε

model of Rastogi and Rodi, and the depth averaged algebraic stress model proposed in section 2.5

(ASM), have been used in the simulations. Some computations without any turbulence modelling,

neglecting the diffusion forces, have also been done.

The numerical results are compared with the experimental mean current speed and water depth

at several locations in the estuary. The location of the observation points is defined in Table 6.1

and shown in Figure 6.1. All the experimental data was obtained by the Coastal and Estuarine

Research Unit (CERU) at the University College of London (UCL).

Point Location X(m) Y(m) River

P1 Holliwell 600420 195250 Crouch

P2 Creeksea 592780 195860 Crouch

P3 Fambridge 585960 196330 Crouch

P4 Wallasea 598750 194150 Roach

P5 Paglesham 596180 192450 Roach

Table 6.1: Location of the experimental data points in the Crouch estuary.

The current speed was measured with self recording impeller-type sensors (Valeport type 104

and Valeport type 105). At all the experimental points the mean current speed and the water depth

were measured at intervals of 15 minutes. Near the mouth of the estuary (Holliwell) the current

direction was also recorded, and it turned out to be essentially bi-directional. The current speed

probes were located at a fixed height above the bed (3m in the Crouch and 2m in the Roach). The

velocity profile is assumed to be rather uniform over the water depth. Hence, in order to compare

with the numerical results, the experimental speed is considered to be representative of its depth

averaged value.
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6.2 Numerical model

The numerical model covers the whole estuary, including all the marsh regions which are only

flooded in spring tides, with around 48995 control volumes. The total size of the numerical domain

is approximately 27.65Km2. Several cross sections of the bed elevation were obtained from a

nautical chart, and extruded along the main channels in order to obtain the bathimetry for the

numerical model (Figure 6.1). More detailed bathimetry was used in Bridgemarsh island, where

the LIDAR data provided by the UK Environmental Agency was used. The bed elevation varies

between zb ≈ −15m in the deepest areas of the main channels, and zb ≈ 3m in the highest marsh

regions. The transverse bed slope in the lateral margins of the main channels is quite steep. Some

parts of the boundary are defined by vertical walls which are never overtopped, and thus, do not

need to be included in the simulation.

Figure 6.1: Bathimetry of the Crouch estuary zb(m). Relative to the mean sea level at the mouth.

6.2.1 Numerical mesh

The numerical mesh is more refined in the sub-tidal and inter-tidal channels, while the size of

the control volumes increases in the most upstream regions of the estuary, which are only flooded

occasionally. Table 6.2 shows the characteristics of both the finite volume mesh and the associated

triangular mesh (see section 3.5.1 for details about how the finite volume mesh is built from the

associated triangular mesh). The size of the control volumes in the main channel is about 330m2.

The largest control volumes are located upstream in the River Roach, with a size of approximately

1300m2. The average size of the control volumes is 570m2. Some details of the numerical mesh

in several regions of the estuary are shown in Figures 6.2 and 6.3.
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Triangular mesh Finite volume mesh

vertex elements volumes faces

Mesh Crouch 17258 31733 48995 95199

Table 6.2: Characteristics of the numerical mesh for the Crouch estuary.

Bridgemarsh island (Figure 6.2) has a surface of approximately 2Km2 which floods and dries

with each tidal cycle. The bed elevation in the island is rather flat, which makes the drying process

slow, since there is not a large slope to help the drainage. At the same time the topography is quite

irregular, with several big holes and bumps. During the ebb tide, the water may remain trapped in

these holes, creating spread patches of still water all over the island. It should also be noticed how,

in a very short distance, the bed elevation goes from zb ≈ 3m in the island, down to zb ≈ −9m in

the main channel. Due to the large extent of the whole estuary, this strong step in the bathimetry

had to be resolved in the numerical mesh with only 3 or 4 elements, although a more refined mesh

would be desirable. This problem about mesh resolution, which was also present in other regions

(specially in the most upper parts of the estuary), may produce in the numerical solution some high

velocity spots. These high velocity spots have only a local influence on the solution, and do not

affect the numerical results in other parts of the estuary. Nevertheless, if the numerical scheme is

not robust and stable, they may lead to convergence and stability problems.

Figure 6.2: Detail of the numerical mesh in Bridgemarsh island.

Figure 6.3 shows the triangular mesh in the Roach river. The mesh is more refined in the main

channel. The size of the control volumes gets considerably coarser in the upper regions. This is

because we are only interested in the bulk effect that these areas have in the main channel flow,

and not in resolving the flow patterns in them. It should be noticed that the geometry of these

regions is quite complex, and therefore, a very refined mesh and a very detailed bathimetry would
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be required in order to resolve the flow patterns in them with a reasonable degree of accuracy.

Figure 6.3: Detail of the numerical mesh in the river Roach.

6.2.2 Boundary conditions

The freshwater apportions in the whole estuary are very scarce and can be neglected in the simula-

tions. The flow is completely driven by the water surface elevation at the mouth, which is the only

open boundary condition to be imposed. The rest of the boundaries are treated as walls. Due to

the extension of the spatial domain (27.85Km2), the mesh size near the walls is relatively coarse,

which precludes the use of wall functions as the wall boundary treatment. Instead, a slip condition

has been used. Nevertheless, most of the time during the simulation the wall boundaries are dry,

and therefore, they do not participate in the solution. On the other hand, the role of the wet-dry

front, which defines the fluid extension, becomes more important.

The water surface elevation at the mouth open boundary is assumed to be constant all along

the boundary. Its level is directly obtained from a tidal gauge which was located near the northern
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shoreline. Water surface elevation samples were taken at constant intervals of 15 minutes (Fig-

ure 6.4). The flow at the mouth is always subcritical. Hence, only the water depth is imposed

during the ebb tide (subcritical outlet). During the flood tide the inlet flow is forced to be per-

pendicular to the boundary, as an additional condition to the water depth (subcritical inlet). Some

regions of the mouth boundary may become dry or wet depending on the water surface level. Ob-

viously, the minimum imposed water depth is zero (dry open boundary). However, special care

must be taken at the boundary line, because it may be the case that the imposed water depth is too

small, and the flow becomes supercritical. This is likely to occur when the flow enters the domain

if the bed slope at the boundary is large, as it is the case in the present model. This case is avoided

by limiting the maximum Froude number at the inlet boundary to 0.95, assuring in this way that

the flow is always subcritical. In order to do so, the normal unit discharge at the inlet boundary is

limited as:

qn,in ≤ 0.95
√

gh3
in (6.1)

where qn,in is the normal unit discharge at the inlet, and hin is the water depth at the inlet, which is

imposed from the wave gauge experimental data. Condition 6.1 only needs to be applied in very

few boundary cells, and at very few time steps during the simulation.

Figure 6.4: Measured water surface elevation at the mouth of the Crouch estuary. Relative to the mean sea

level.

6.2.3 Wet-dry fronts

A correct modelling of the wet-dry fronts is of great importance in the Crouch estuary. The

bathimetry of the estuary, with several flat marsh areas, and the rather large tidal range (5m in

spring tide), produce a large inter-tidal region. During the 5 days of simulation, the maximum dry

area at low tide is about 11Km2, while at the highest spring tide the dry area is only 0.25Km2.
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Considering that the total extension of the numerical domain is 27.65Km2, there is up to a 40% of

the surface of the estuary which floods and dries periodically. Hence, an inappropriate numerical

treatment of the flooding and drying processes will lead to erroneous results.

In order to check the sensibility of the numerical solution to the wet-dry tolerance parame-

ter εwd (see section 3.9), three different values were tried in the computations. The smallest value

of εwd is desired from an accuracy point of view. But too small values of εwd promote the nu-

merical instabilities, specially in domains with a very irregular bathimetry and a relatively coarse

mesh, leading to very small time steps. After doing the sensibility analysis for several values of

the wet-dry tolerance parameter (εwd = 10−2m, 10−3m, 10−4m), it was found that no differences

appear in the numerical results for values of εwd smaller than 10−3m (Figure 6.5), which was the

value chosen for the definitive simulations. It should be noticed in Figures 6.5 and 6.6 the dif-

ferences in the results when the parameter εwd is diminished from 10−2m to 10−3m, specially in

the depth averaged velocity, but also in the water depth in the shallowest regions of the estuary.

This shows the importance of doing a sensibility analysis of the solution to the wet-dry tolerance

parameter. A priori, a value of εwd = 10−2m might seem small enough, specially considering the

spatial dimensions of the problem, but it turns out after the sensibility analysis that a smaller value

is desirable. These results apply only for the specific wet-dry treatment used in this work, and may

vary for other schemes.

6.2.4 Influence of the bed friction on the numerical solution

All the inter-tidal and sub-tidal regions of the estuary are formed by muddy sediments, which are

assumed to have a Manning’s coefficient of approximately n ≈ 0.02m/s1/3. There are also several

marsh areas in the estuary, specially in Bridgemarsh island, in the upper part of the estuary and in

the side margins of the main channels. These areas are usually higher than the mean high water

level at spring tide. The Manning’s coefficient in the marsh regions (zb > 1.5m) is estimated to be

around n ≈ 0.05m/s1/3.

In order to check the sensibility of the model to the bed friction coefficient, several computa-

tions have been made with different bed friction coefficients. The following Manning’s numbers

have been considered: (1) a constant value of n = 0.015m/s1/3 in the whole estuary; (2) a constant

value of n = 0.020m/s1/3 in the whole estuary; (3) a constant value of n = 0.025m/s1/3 in the

whole estuary; (4) n = 0.020m/s1/3 in the sub-tidal and inter-tidal channels and n = 0.050m/s1/3

in the marsh regions. The sensibility of the numerical solution to the Manning’s number is low for

both the water depth and the current speed (Figure 6.7).
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(a) Water depth h(m). Wallasea. (b) Water depth h(m). Fambridge.

(c) Current speed (m/s). Wallasea. (d) Current speed (m/s). Fambridge.

Figure 6.5: Dependence of the numerical solution on the wet-dry tolerance parameter (εwd). Water depth

h(m) and current speed (m/s) at several locations in the Crouch estuary. The differences between the

results obtained with εwd = 0.001m and with εwd = 0.0001m cannot even be appreciated in the plots.

(a) Water depth h(m). εwd = 0.01m. (b) Water depth h(m). εwd = 0.001m.

Figure 6.6: Dependence of the water depth h(m) at Bridgemarsh island on the wet-dry tolerance parameter

(εwd). t = 22h. Flood tide. Dry regions are shown in black.
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(a) Water depth h(m). Holliwell. (b) Water depth h(m). Wallasea.

(c) Current speed (m/s). Holliwell. (d) Current speed (m/s). Wallasea.

Figure 6.7: Dependence of the numerical solution on the bed friction coefficient. Water depth h(m) and

current speed (m/s) at several locations in the Crouch estuary.

6.3 Numerical results and experimental validation

All the computations have been made with the hybrid first/second order scheme (see section 3.5.7),

which uses a second order extrapolation on the cell faces for the unit discharges and a first order

approximation for the water depth. The scheme is therefore, second order in qx, qy and first order

in h. Both van Leer’s and Roe’s schemes have been used without finding any difference in the

numerical results.

6.3.1 Water depth and current speed

The flow in the Crouch estuary can be described as a very long shallow wave (tidal wave) propa-

gating in a narrow channel with irregular bathimetry. Assuming a mean depth in the main channel

of the estuary of the order of d ≈ 10m, a rough estimation of the wave celerity is given by cw =√
gd ≈ 10m/s. Considering that the tidal period is approximately Tw ≈ 12h, the wave length of
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such a wave propagating in a 10m depth channel would be around Lw = cwTw ≈ 430Km. This

gives a ratio between the vertical and horizontal length scales of
d

Lw

≈ 2. 10−5, which is very

small, specially when compared with the ratios obtained in chapter 5 (Tables 5.3 and 5.4). At the

same time the Ursell number, which is a ratio between the non-linear and the dispersive effects

(see section 5.2.2), can be approximated as Ur =
gHmaxT

2
w

2d2
≈ 10000, which is a very high value.

Therefore, this is a very shallow non-dispersive wave which should be adequately modelled by the

2D shallow water equations.

From the numerical results obtained with the different turbulence models (ML, k−ε and ASM),

it has been observed that the velocity and water depth fields are very insensitive to the turbulence

model used. Further, even when the turbulent diffusion is neglected by forcing the eddy viscosity

to zero, the mean flow results are very similar to those obtained with the turbulence models. This

is because the turbulence level in the estuary is rather low. Turbulence is mainly produced in the

main channel due to bed shear stress. Hence, a rough estimation of the eddy viscosity can be done

with the parabolic eddy viscosity model (section 2.4.3) as:

νpar
t ≈ 1

6
κufh ≈ 0.1h

√
gn|U|
h1/6

≈ 0.06m2/s (6.2)

where it has been assumed a water depth of 10m, a Manning’s number of 0.02m/s1/3, and a

depth averaged velocity of 1.5m/s. With the estimation given by Equation 6.2, and assuming a

length scale of 1000m (which is approximately the width of the estuary at the mouth), a turbulent

horizontal Reynolds number can be defined as Ret =
UL

νt

≈ 21000. This is a rather large value,

which means that the turbulent diffusion forces are small when compared to the convective forces

(in the fishway flow (chapter 8), where turbulence plays an important role in the mean flow field,

the turbulent Reynolds number is three orders of magnitude smaller). The small magnitude of

the diffusive forces in the momentum equations diminishes the influence of the turbulence model

on the mean velocity field. At the same time, since the three turbulence models give a similar

estimation of the eddy viscosity produced by bed friction, the eddy viscosity field obtained with

all the models is very similar (Figure 6.8). The ASM and k − ε models give slightly larger eddy

viscosity values than the ML model, but the differences are not significant. It should be noticed that

the estimation of νt given by Equation 6.2 agrees fairly well with the numerical results (Figure 6.8),

which confirms that turbulence is mainly produced by bed friction. An eddy viscosity of the

same order of magnitude was obtained by Kawanisi in a shallow tidal estuary [69]. Velocity and

water depth fields independent of the turbulence model were also obtained by Babarutsi et al. [5]

when modelling shallow recirculating flows dominated by bed friction, by Davies et al. [35] when

computing the tidal flow in the Irish Sea, and by Lloyd and Stansby [84] when modelling the flow

around conical islands.

Assuming an approximated wave celerity of 10m/s, it takes around 40min for the tidal wave
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(a) νt(m2/s). ML model. (b) νt(m2/s). k − ε model.

Figure 6.8: Eddy viscosity field νt(m2/s) at the mouth of the Crouch estuary. t = 50h. Ebb tide. ML and

k − ε models. Dry regions are shown in black.

to propagate from the mouth to the upper part of the estuary. For a tidal range of 5m this produces

a maximum difference in the water surface level over the whole estuary of approximately 0.5m, as

it is shown in Figure 6.9.

Figure 6.9: Water surface elevation in the Crouch estuary. t = 7.5h. Flood tide. Dry regions are shown in

black.

The highest velocities given by the model occur near the mouth (Figure 6.10), with values

around 1.5m/s. High velocities are also predicted by the model at the entrance of the Roach river

and near Bridgemarsh island, which are regions where the tidal channel narrows and gets shallow

(Figure 6.1). Some high velocity spots appear in the upper part of the estuary. As it has been said,

this velocity peaks are due to the lack of resolution in the bathimetry and to the coarse numerical

mesh used in the upper part of the estuary, which cause large bed slopes at some specific points

of the numerical model. Nevertheless, they are scarce and do not have any influence on the global

solution. It should be remembered that we are not interested in resolving the flow patterns in these
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parts of the estuary, and they are included in the model just in order to account for their bulk effect

on the global flow.

Figure 6.10: Depth averaged velocity field |U|(m/s) in the Crouch estuary. t = 45h. Flood tide. Dry

regions are shown in black.

The flooding and drying of Bridgemarsh island is shown in Figures 6.11 and 6.12. Although

no experimental measurements are available inside the island, it is known from visual observations

that it floods completely. The numerical results show a good behaviour, without any spurious

oscillations. As it has been pointed out previously, due to the irregular bathimetry, there are several

isolated holes were the water gets trapped without possibility of drainage.

Figures 6.13 and 6.14 show the comparison between the experimental and numerical results.

As it has been argued, the numerical water depth and velocity are independent of the turbulence

model used. In general the water depth is rather well predicted by the model (Figure 6.13) except

at Fambridge, where the maximum water depth is slightly underpredicted. The agreement on the

depth averaged velocity varies between the different experimental stations (Figure 6.14). Both the

ebbing and flooding flow at Wallasea are very well predicted. The agreement at Holliwell and Fam-

bridge is also rather satisfactory, although the maximum ebbing velocity is slightly underpredicted

by the model. The results at Paglesham and Creeksea are poorer, being the maximum flooding

and ebbing velocities overpredicted by the model. It is clear from Figures 6.10 and 6.1 that the

velocity field in the whole estuary is very dependent on the bed elevation, being the velocity higher

in the deepest regions of the estuary. It is also clear from Figures 6.7 and 6.14 that the numerical

solution is almost independent of the Manning’s number and of the turbulence model. Hence, the

disagreements between the numerical and the experimental results are probably due to errors in

the local bathimetry. Another possible reason for the experimental-numerical disagreements is the

presence of local flow patterns which would need a more refined numerical model to be resolved.
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(a) Water depth h(m). t = 48h. (b) Water depth. h(m). t = 49h.

(c) Water depth. h(m). t = 50h. (d) Water depth. h(m). t = 51h.

Figure 6.11: Water depth field h(m) at Bridgemarsh island during an ebb tide. Dry regions are shown in

black.

6.3.2 Turbulence field

The largest values of turbulent kinetic energy appear at the mouth of the estuary (Figure 6.15),

where the highest velocities occur. There is also a high turbulent energy region at the entrance of

the Roach river. However, even in those regions of the estuary, the turbulent kinetic energy is not

excessively high, taking values around 0.015m2/s2. This gives a maximum turbulence intensity in

the estuary of approximately Tk =

√
k

|U| ≈ 0.08, which is a relatively low value.

Both the ASM and k− ε models give very similar turbulent energy fields (Figure 6.16). This is

because turbulence is mainly produced by bed friction, and both models account in a similar way

for this process.

Although there are not experimental measurements of the turbulent variables, the time evolu-

tion of the turbulent kinetic energy predicted by the model at several locations in the estuary is

shown in Figure 6.17. The differences between the ASM and k − ε models are so small that they

cannot be appreciated in the plots. From the numerical results it should be noticed the asymme-

try on the turbulence level at Holliwell and Wallasea during the flood and ebb tides, specially at

Wallasea, where the turbulent energy is three times larger in the flood tide than in the ebb tide.

It should be remarked that this strong asymmetry does not appear in the depth averaged velocity

(Figure 6.14). In other locations, like Paglesham, similar values of turbulent energy are predicted

161



6.3. NUMERICAL RESULTS AND EXPERIMENTAL VALIDATION

(a) Water depth h(m). t = 31.5h. (b) Water depth h(m). t = 33h.

(c) Water depth h(m). t = 33.5h. (d) Water depth h(m). t = 34.5h.

Figure 6.12: Water depth field h(m) at Bridgemarsh island during a flood tide. Dry regions are shown in

black.

during the flood and ebb tides. In any case, since the main production of turbulence is due to

bed friction, the turbulence level is expected to be rather dependent on the bed friction coefficient.

Turbulence experimental measurements would be required in order to calibrate and validate the

turbulence models.

The Reynolds stresses given by the ASM and k − ε models show some differences in the

maximum values (specially in v′2 and u′v′), but still a very similar spatial distribution and time

evolution are obtained with both models (Figures 6.18 and 6.19).
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(a) Water depth h(m). Holliwell. (b) Water depth h(m). Wallasea.

(c) Water depth h(m). Paglesham. (d) Water depth h(m). Fambridge.

Figure 6.13: Water depth h(m) at several locations in the Crouch estuary. 5 day time series. Several

turbulence models (ML, k − ε, ASM) and zero eddy viscosity (POT).
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(a) Current speed V (m/s). Holliwell. (b) Current speed V (m/s). Wallasea.

(c) Current speed (m/s). Paglesham. (d) Current speed (m/s). Fambridge.

Figure 6.14: Depth averaged current speed (m/s) at several locations in the Crouch estuary. 5 day time

series. Several turbulence models (ML, k − ε, ASM) and zero eddy viscosity (POT).
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Figure 6.15: Turbulent kinetic energy field k(m2/s2) in the Crouch estuary. t = 36.5h. Ebb tide. k − ε
model.

(a) Turbulent energy k(m2/s2). k − ε model. (b) Turbulent energy k(m2/s2). ASM.

Figure 6.16: Turbulent kinetic energy field k(m2/s2) at the mouth of the Crouch estuary. t = 37h. Ebb

tide. ASM and k − ε models.
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(a) Turbulent energy k(m2/s2). Holliwell. (b) Turbulent energy k(m2/s2). Wallasea.

(c) Turbulent energy k(m2/s2). Paglesham. (d) Turbulent energy k(m2/s2). Fambridge.

Figure 6.17: Turbulent kinetic energy k(m2/s2) at several locations in the Crouch estuary. 5 day time series.

ASM and k − ε models.

(a) u′v′. k − ε model. (b) u′v′. ASM.

Figure 6.18: u′v′ field. t = 50h. Ebb tide. ASM and k − ε models.
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(a) v′2. Holliwell. (b) u′v′. Holliwell.

Figure 6.19: Reynolds stresses v′2 and u′v′ at Holliwell. 5 day time series. ASM and k − ε models.
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Chapter 7

Open channel flow around a 90o bend

7.1 Introduction

In this chapter the free surface flow in an open channel with a 90o bend is computed and compared

with the experimental velocity data obtained by Bonillo [13]. Three depth averaged turbulence

models have been used in the numerical computations: the mixing length model (ML), the k − ε

model of Rastogi and Rodi, and the depth averaged algebraic stress model presented in section 2.5

(ASM). Four different grids, with different mesh size near the wall, have been used in the sim-

ulations. The influence of the bed friction is also examined, comparing the results obtained for

different Manning numbers.

7.2 Experimental tests

7.2.1 Experimental setup

The experimental tests were carried out by Bonillo [13] at the hydraulic laboratory of the CITEEC

(Centro de Innovación Tecnolóxica en Edificación e Enxeñería Civil, University of A Coruña,

Spain). A brief description of the experimental procedure is done in this section. A detailed

description of the experimental setup can be found in [13].

The experiments were performed in a concrete rectangular channel with two rectilinear sections

joined by a 90o bend (Figure 7.1). The first section is 0.86m wide with a flat bed. At the end of

the first section, just before the bend, there is a small step with a change in the bed elevation of

Δzb = −0.013m. The second section is 0.72m wide with a flat bed.

The three-dimensional velocity was measured with an Acoustic Doppler Velocimeter (Son-

tek ADV). The control volume of the ADV is a 6mm height cylinder with a diameter of 4mm

(75mm3), which is located 5cm away from the ADV in order to avoid interferences with the

flow (Figure 7.2). The experimental velocity was measured at 1029 spatial points, distributed in
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Figure 7.1: Spatial domain in the 90o bend.

(a) MicroADV. (b) Sampling volume.

Figure 7.2: MicroADV and sampling volume.

a horizontal plane located at approximately the mid-point between the bed and the free surface

(Figure 7.3(a)). At each data point 40 instantaneous samples were registered.

The total water discharge in the experiments was 29.5l/s. At the end of the channel the water

depth was fixed to 0.180m. With this boundary conditions the mean velocity at the beginning of

the channel was 0.20m/s, and the water depth 0.173m. The horizontal Reynolds number based on

the channel width, and the Froude number based on the water depth at the entrance of the channel

are given by:

Re =
|U|L

ν
= 1.7 105 Fr =

|U|√
gh

= 0.153 (7.1)

where |u| is the module of the experimental mean velocity. The turbulence intensity in the main

section of the channel is around Tk =

√
k

|u| ≈ 0.05, where k is the turbulent kinetic energy. The
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variability of the mean velocity estimated from the experimental data (εuN
) is equal to:

εuN
=

√
σ2

uN

u2 =
1√
N

σu

u
≈ 1√

N

√
2

3
Tk ≈ 0.007 (7.2)

where N is the number of independent instantaneous samples (N = 40), uN is the estimation of

the mean velocity obtained with the N independent samples, σ2
uN

is the variance of the estimated

mean velocity, and σ2
u is the variance of the instantaneous velocity. In the inner and outer corner

of the bend, due to the strong velocity gradients the turbulence intensity increases considerably,

achieving values of nearly 100%, which corresponds to a variability of the experimental mean

velocity of approximately 15%. This values should be taken into account when comparing the

numerical and experimental results.

7.2.2 Experimental results

The experimental data points, as well as the horizontal and vertical experimental velocity fields

are shown in Figure 7.3. In the first section of the channel the velocity is quite uniform, with

only some perturbations at the upstream entrance, and the vertical velocity is almost zero. A small

recirculation bubble appears in the inner corner of the bend. At the same time, a vertical eddy

which expands over almost the entire channel width is generated in the bend due to the change

in the direction of the flow. This secondary flow can be clearly identified in the vertical velocity

field near the bend (Figure 7.3(d)). The vertical eddy may produce some non-homogeneities in the

vertical profile of the horizontal velocity. For this reason, in this region the dispersion terms due to

non-uniformities in the vertical direction (see section 2.3), which are neglected in the depth aver-

aged model, may introduce some modelling errors in the momentum conservation equations. The

influence of these errors in the numerical simulations can only be checked by the agreement be-

tween the experimental and the numerical results. The effect of the bend is present in the flow until

the end of the second section of the channel, although the secondary flow has almost disappeared

at 1.5m downstream the bend.

Figure 7.4 shows the experimental turbulent kinetic energy field, as well as the normal Reynolds

stresses. The vertical Reynolds stress (w′2) is always smaller than the horizontal ones. There is

an important production of turbulence in the inner corner of the bend due to horizontal velocity

gradients (Figure 7.4(d)). The turbulence level in the first section of the channel, which is mainly

given by the bed friction production, is rather low, specially compared with the turbulence level

in the bend region. There is also some production of turbulence in the outer corner of the bend

due to the stagnation conditions. However, the production in that area is much lower than in the

recirculation bubble, and it has little influence on the downstream flow.
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(a) Experimental data points. (b) Vx(m/s).

(c) Vy(m/s). (d) Vz(m/s).

Figure 7.3: Experimental velocity field in the 90o bend.

7.3 Numerical model

Considering the flow configuration and the experimental results, it seems reasonable to use a depth

averaged model to compute the free surface flow in the bend. The most challenging point of the

numerical simulation is the correct prediction of the separated region which appears in the inner

corner of the bend. It is well known that RANS models usually fail to give accurate predictions of

strong separated flows over 3D geometries. However, in this case the 2D forcing produced by the

shallowness of the flow is expected to reduce the 3D features of the flow field, helping to improve

the accuracy of the results.

Three depth averaged turbulence models have been used: the mixing length model (ML), the

k − ε model of Rastogi and Rodi, and the depth averaged algebraic stress model presented in

section 2.5 (ASM). All the models have been used with the original constants, without any modi-

fication or previous calibration.
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(a) u′2(m2/s2). (b) v′2(m2/s2).

(c) w′2(m2/s2). (d) k(m2/s2).

Figure 7.4: Experimental normal turbulent stresses fields in the 90o bend.

7.3.1 Influence of the numerical scheme on the solution

As it has been discussed in the validation of the solver (chapter 4), it is very important to use an

accurate numerical scheme with a low numerical diffusion. Otherwise the solution may be too

diffusive, and the velocity profiles too flattened. In order to check the influence of the numerical

scheme on the solution, three different numerical schemes have been used: the first order van Leer’s

scheme, its second order extension, and the second order extension of Roe’s scheme. The results

shown in Figures 7.5 and 7.6 have been obtained without using any turbulence model. Furthermore,

the effective viscosity was set to zero, and therefore, all the diffusion comes from the numerical

scheme.

The first order scheme is too diffusive, and thus, it is not able to generate a recirculation region

downstream the bend (Figure 7.5(a)). On the other hand, the second order scheme, with a much

lower numerical diffusion, produces a large recirculation bubble (Figure 7.5(b)). The less diffusive
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the numerical scheme is, the larger the recirculation bubble is. Eventually, if a scheme with no

numerical diffusion at all was used (which would be actually a centred scheme), the bubble, and

the scheme, would become unstable. The differences between Roe’s and van Leer’s schemes are

negligible (Figure 7.6). Since the water surface elevation and the bed are almost flat, the hybrid

first/second order and the fully second order schemes (see section 3.5 for a detailed description of

the schemes) produce exactly the same results (order 2 in Figure 7.6). All the results presented in

this chapter have been obtained with the second order extension of the van Leer’s scheme.

(a) First order van Leer’s scheme. (b) Second order van Leer’s scheme.

Figure 7.5: Influence of the numerical scheme on the velocity field. Longitudinal velocity Vx(m/s) field.

(a) Cross section x=−1.5m. (b) Cross section x=−0.8m.

Figure 7.6: Influence of the numerical scheme on the velocity field. Cross sections of the longitudinal

velocity Vx(m/s) downstream the bend.
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7.3.2 Mesh convergence

Four different meshes have been used in the computations. The spatial domain covered by the

meshes is shown in Figure 7.1. The finite volume mesh is generated from a triangular mesh by the

procedure presented in section 3.5.1. Figure 7.7 shows the near bend region of the four triangular

meshes which have been used to build the respective finite volume meshes. The characteristics of

both the triangular and the finite volume grids are shown in Table 7.1. The main difference between

them is the mesh size near the wall and in the separated region. A refined grid is needed in this area

in order to resolve the recirculation bubble, and to avoid an excessive numerical diffusion which

may interfere with the turbulent diffusion. Notice that in Table 7.1 the most important parameter in

order to characterise the mesh resolution is the distance from the first inner node to the wall in the

bubble region (Δywall). On the other hand, the computational cost is proportional to the number

of faces in the finite volume mesh, since all the main loops in the numerical solver are done over

volume faces. Therefore, the computational cost of mesh M4 is around 4 times higher than the

cost of mesh M1, while the resolution in the bubble region is almost 8 times higher. The grid size

in the recirculation region differs approximately by a factor 2 between each mesh.

Triangular mesh Finite volume mesh

vertex elements volumes faces Δywall

M1 738 1296 2033 3888 0.031 m

M2 1697 3124 4820 9372 0.018 m

M3 2495 4712 7206 14136 0.008 m

M4 3003 5700 8702 17100 0.004 m

Table 7.1: Characteristics of the computational grids for the 90o bend. Δywall: distance from the first inner

node to the wall in the recirculation region.

The mesh convergence has been analysed according to the separation length and the velocity

profiles in the recirculation region, since it is there where the largest differences between the four

meshes appear. Table 7.2 shows the recirculation length computed with several meshes and turbu-

lence models. Unfortunately, the bubble length cannot be determined from the experimental results

due to the minimum distance required between the ADV and the wall of the channel. Nevertheless,

the bubble width can be determined from the experimental data, showing a very good agreement

with the numerical results given by the three turbulence models (Table 7.3).

ML k − ε ASM

M1 0.38 m 0.43 m 0.35 m

M2 1.12 m 1.05 m 1.12 m

M3 1.46 m 1.10 m 1.09 m

M4 1.71 m 1.15 m 1.15 m

Table 7.2: Recirculation length computed with several meshes and turbulence models.
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(a) Mesh 1. (b) Mesh 2.

(c) Mesh 3. (d) Mesh 4.

Figure 7.7: Numerical meshes in the near bend region.

Exp. ML k − ε ASM

M4 0.13 m 0.12 m 0.11 m 0.12 m

Table 7.3: Recirculation width computed with mesh M4.

The results obtained with the mesh M1 are rather independent of the turbulence model used.

This is because the grid is too coarse (Figure 7.7), and the numerical diffusion dominates over the

turbulent diffusion. With this mesh (M1), the near wall mesh size (y+) grows quickly, reaching

values larger than 100 at 0.8m downstream the bend (x = −1.23m in Figure 7.8(b)). Notice also in

Figure 7.8(a) how with the mesh M4 the lower limit in y+ (see section 1.4) acts from x = −1.4m

to x = −1.8m.

The wall friction velocity (u∗) obtained with the different turbulence models and grids is shown

in Figure 7.9. The ASM and k−ε models give similar results. The stagnation point (u∗ = 0) defin-

ing the limit of the recirculation bubble is very similar for grids M2, M3 and M4. However, the

maximum friction velocity does not reach convergence until grid M3. The results are quite in-

sensitive to further mesh refinement. No significant differences appear between grids M3 and M4
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(a) Mesh 4. Several turbulence models. (b) ASM. Several meshes.

Figure 7.8: y+ =
yu∗
ν

in the recirculation wall in the 90o bend.

(a) Mesh 4. (b) ASM.

Figure 7.9: Wall friction velocity u∗(m/s) in the recirculation wall in the 90o bend.

(Figures 7.9(b) and 7.10(b,c)). On the other hand, the ML model is more sensitive to mesh refine-

ment, appearing still some differences between the velocity profiles obtained with the grids M3

and M4 (Figure 7.10(a)).

7.3.3 Influence of the bed friction on the numerical solution

Several Manning’s numbers have been used in the computations in order to analyse the effect of

the bed friction on the numerical solution. It has turned out that, in the range of expected values

for the Manning’s coefficient in the experimental concrete channel, the bed friction has very little

influence on the mean flow field (Figure 7.11). On the other hand, it does have influence on the
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(a) ML model. (b) k − ε model. (c) ASM.

Figure 7.10: Mesh convergence in the 90o bend. Velocity profile Vx(m/s) at x = −1m.

turbulence level in the first section of the channel, where turbulence is mainly produced by vertical

shear. Nevertheless, near the bend the production of turbulence due to horizontal shear is more

important than the production due to vertical shear, and therefore, the effect of the bed friction in

the recirculation bubble is minor (Figure 7.12(a)).

(a) Longitudinal velocity Vx(m/s). (b) Water depth h(m).

Figure 7.11: Dependence of the mean flow at x = −1m on the bed friction.

Figure 7.12 shows the turbulent kinetic energy predictions obtained with two different Man-

ning’s numbers. It is clearly shown the high turbulent energy reached in the recirculation region,

which is mainly produced by horizontal shear strain, and independent of the bed friction. Outside

the recirculation bubble turbulence is mainly produced by bed friction, and thus, some differences

appear in the turbulent kinetic energy when the Manning’s number is increased. However, these

differences do not affect the mean flow field, as it is shown in Figure 7.11. From the agreement

between experimental and numerical results in the first section of the channel, a Manning’s co-

efficient of n = 0.005s/m1/3 was chosen for the definitive computations. It should be noticed

that this value is rather small compared to the Manning’s coefficients which are often used in the

simulation of open channel flow. This is probably because many simulations do not include the
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(a) Section x = −1m. (b) Section y = 0m.

Figure 7.12: Dependence of the turbulent kinetic energy field k(m2/s2) on the bed friction.

turbulent diffusion effects, and therefore, an increased Manning’s coefficient is used in order to

account partially for the dissipation effects of turbulence.

7.4 Numerical results and experimental validation

The comparison between the numerical results and the experimental data will be made in the recir-

culation region, since the first section of the channel does not present any interesting flow features.

The following facts should be taken into consideration when comparing the numerical and exper-

imental results: (1) the numerical velocity is the depth averaged velocity, while the experimental

velocity is the horizontal velocity at approximately the mid-point between the bed of the channel

and the free surface (zexp ≈ h

2
); (2) the experimental values plotted in the cross sections have

been obtained by interpolation of the actual measurements, which were made in the experimental

mesh shown in Figure 7.3(a); (3) according to the turbulence level and the number of instanta-

neous samples which have been used to compute the statistical estimators of the mean variables,

the variability of the experimental mean velocity in the recirculation region is about 10%.

It should be noticed that in uniform channel flow the velocity profile is quite homogeneous in

the vertical direction, and the velocity at zexp is approximately equal to the depth averaged velocity.

However, near the bend the vertical eddy generated in the flow tends to destroy the homogeneity in

the vertical direction. This has two main effects. First, the differences between the depth averaged

velocity and the experimental velocity measured at zexp may increase, depending on the actual

vertical profile. Second, a modelling error is introduced in the depth averaged equations, which

neglect the dispersion terms due to the non-homogeneity of the vertical profiles (section 2.3).

Despite these 3D flow features appearing in the near bend region, the overall agreement be-

tween the experimental and the numerical fields is very satisfactory, as it is shown in Figure 7.14.

The ML model overpredicts the recirculation region (white colour in Figure 7.14). This is because
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(a) ML model. (b) k − ε model.

Figure 7.13: Eddy viscosity field νt(m2/s) in the 90o bend. ML and k − ε models.

(a) Experimental. (b) ML model.

(c) k − ε model. (d) ASM.

Figure 7.14: Velocity field Vx(m/s) in the 90o bend. Several turbulence models and experimental results.

White colour accounts for positive Vx.

the model does not account for transport processes, and therefore, all the eddy viscosity generated

in the inner corner of the bend is not convected, neither diffused, downstream the bend, as it is in

the ASM and k − ε models (Figure 7.13). The size of the recirculation bubble computed with the

ASM and k − ε models shows a better agreement with the experimental one, although it is still

somewhat larger.

The turbulent energy field predicted by the solver agrees rather well with the experimental one
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(a) Experimental. (b) ASM.

Figure 7.15: Turbulent kinetic energy field k(m2/s2) in the 90o bend. ASM and experimental results.

(Figure 7.15). The production of turbulence in the inner corner, as well as the convection and

diffusion downstream are well predicted. The diffusion of turbulent kinetic energy is somewhat

larger in the experimental results than in the numerical prediction, probably due to the convection

and mixing produced by the vertical eddies which are not considered in the model.

The agreement between the experimental and numerical fields of the normal Reynolds stresses

is rather satisfactory for both the ASM and the k − ε models (Figure 7.16). The lateral diffusion

of u′2 downstream the bend is slightly better predicted by the ASM, but still smaller than the

experimental one. As it has been said, this difference is probably due to the lateral dispersion

introduced by the vertical eddy. The maximum level of u′2 is well given by both models, while the

maximum value of v′2 is slightly overpredicted by the k − ε model.

A more detailed comparison of the experimental and numerical fields is done in cross sections

downstream the bend. Considering the variability of the experimental data, the agreement in the

velocity is very satisfactory (Figure 7.17). From the cross section at x = −1.5m (Figure 7.17(a)),

it seems that the length of the recirculation bubble is overestimated by all the models, specially

by the ML model, which is the one which predicts the largest recirculation region. The cross

sections at x = −0.8m and x = −1.3m show a small bump in the experimental velocity profile

near the outer wall, which seems to propagate towards the wall. This bump occurs in the region

of maximum vertical velocity, which means that it is probably generated by the secondary flow

originated in the bend region. It should be remarked again that, since the experimental velocity has

been measured at mid-water depth, it may not be representative of the depth averaged velocity at

points with non-uniform vertical profiles.

Regarding the performance of the turbulence models, the differences between the computed

velocity fields, which appear mainly in the recirculation bubble, are really small compared with

the scatter in the experimental data. The ML model gives a slighter poorer prediction of the bubble

length, but its degree of accuracy is rather satisfactory, specially considering the simplicity of the

model. The ASM and k − ε models give very similar results. Larger differences appear in the
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(a) Experimental u′2(m2/s2) field. (b) Experimental v′2(m2/s2) field.

(c) k − ε model. u′2(m2/s2) field. (d) k − ε model. v′2(m2/s2) field.

(e) ASM model. u′2(m2/s2) field. (f) ASM model. v′2(m2/s2) field.

Figure 7.16: Reynolds stresses fields in the 90o bend. ASM and k − ε models, and experimental results.

turbulence intensity near the bend (cross section x = −0.8m), where the maximum turbulent

kinetic energy is better predicted by the ASM model than by the k − ε model (Figure 7.18(c)).

However, the differences between models smear out really fast downstream, and no difference at all

can be observed at the cross section x = −1.3m (Figure 7.18(b)). Although both models slightly

over-predict the turbulence intensity inside the bubble, the overall agreement and downstream

evolution is very satisfactory.
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(a) Section x = −1.5m. (b) Section x = −1.3m. (c) Section x = −0.8m.

Figure 7.17: Longitudinal velocity Vx(m/s) at several cross sections in the 90o bend.

(a) Section x = −1.5m. (b) Section x = −1.3m. (c) Section x = −0.8m.

Figure 7.18: Turbulent kinetic energy k(m2/s2) at several cross sections in the 90o bend.
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Chapter 8

Turbulent flow in a vertical slot fishway

8.1 Introduction

Fishways are hydraulic structures which allow the upstream migration of fishes through engineer-

ing constructions and natural obstructions in rivers. A vertical slot fishway is a channel divided into

several pools separated by slots. Migrating fishes are supposed to swim upstream by the fishway

in order to overcome any obstruction in the river. The vertical slot fishways work effectively for a

wide range of discharges and water levels [30], because the flow pattern is relatively insensitive to

variations on the discharge.

The flow pattern in the pools, which is determined by the pool geometry and boundary con-

ditions, has a great importance in order to guide the fish through the fishway. Not only do the

velocity field and the water depth in the pool affect the swimming costs of fishes, but also the tur-

bulence level has proved to increment it considerably [46, 30, 110]. An excessive turbulence level

can preclude the passage of fishes through the pools [110]. Clay [30] suggests that when designing

a fishway it is necessary to locate the areas of high turbulence and to assess how they can influence

the fish behaviour. Enders et al. [46] consider that in order to estimate correctly the swimming

costs of fish in turbulent flows, it is necessary to consider explicitly both the mean velocity and the

turbulent kinetic energy fields.

The flow field in several designs of vertical slot fishways was studied experimentally by Ra-

jaratnam et al. [114, 113], Puertas et al. [111], Pena [105] and Pena et al. [106]. Those studies show

that the mean velocity field in vertical slot fishways is almost two-dimensional, being the vertical

velocity much lower than the horizontal one. At the same time the flow pattern is rather uniform

over the vertical direction. Therefore, using a depth averaged shallow water model is justified.

Nevertheless, the quality of the numerical results cannot be assessed a priori, since the shallow

water approximations are not fulfilled in some regions of the pools, specially near the vertical slot.

The experimental results of Pena [105], obtained for several discharges and water depths, will

be used in this chapter in order to test the numerical model in such kind of flows. The principal
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aim is to assess the possibility of using a depth averaged shallow water model in order to compute

the flow in vertical slot fishways. The turbulent characteristics of the velocity field will also be

studied in this chapter, in order to understand more deeply the flow field. Under the experimental

conditions used by Pena, the flow is highly turbulent and non-isotropic. The experimental velocity

and turbulent kinetic energy fields are compared with the numerical results given by the shallow

water model.

8.2 Experimental setup

All the experimental measurements were carried out at the CITEEC (Centro de Innovación Tec-

nolóxica en Edificación e Enxeñería Civil, University of A Coruña, Spain) by Pena [105]. The

fishway scale model was built in a 12m long channel, with a 1m width square cross section (Fig-

ure 8.1).

(a) 3D view. (b) Lateral view.

Figure 8.1: Experimental fishway model.

The channel was divided into nine active pools (Figure 8.2(a)). The water discharge was fixed

as inlet boundary condition. At the lower end of the flume, a tailgate causing overflow was used

to fix the water depth. Two different pool designs were tested, which will be addressed as T1

and T2 (Figures 8.2(b) and 8.2(c)). The pool design T2 was used in the first 4 pools, the fifth

was a transition pool, and the last 4 pools had a T1 design. The experimental measurements were

registered in pools number 3 and 7.

A conceptual state of uniform flow, as defined by Rajaratnam et al. [113], was used in the

experiments, so that the mean water depth at the middle cross section was the same in all the pools.

This was achieved, for any fixed discharge, by controlling the downstream boundary condition. In
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(a) Fishway model.

(b) Pool design T1. (c) Pool design T2.

Figure 8.2: Fishway pool designs. Dimensions in Table 8.1.

L B D d b s f df

T1 1213 1000 683 218 163 129 243 86

T2 1213 1000 839 61 165 131 - -

Table 8.1: Fishway pool dimensions in mm (see Figure 8.2).

all the results presented in this chapter the bed slope of the flume was 10%, which is in the range

of the most frequently used slopes in this kind of structures [30, 76].

The 3D velocity field was measured with a MicroAcoustic Doppler Velocimeter (ADV). The

sampling volume of the ADV is a 6mm length cylinder with a diameter of 4mm (sample volume

of 0.08cm3). The control volume is located 5cm away from the probe in order to reduce flow

interference (Figure 7.2). The maximum sampling rate of the ADV used in the experiments is

50Hz. The water depth in the pools was measured with a conductivity-based depth probe, DHI

Wave Gauge Type 202. The x - axis in the experiments is defined in the longitudinal direction of

the fishway. The y - axis is defined in the transverse direction, being the xy - plane parallel to the

bottom of the fishway (Figure 8.4).

The three mean velocity components (u, v, w) were registered at several points on planes

parallel to the flume bed. The number of measurement planes depends on the water depth in the

pool, which is given by the water discharge, the distance between planes being usually 10cm. The

location of the measurement points on each plane is shown in Figure 8.3 for the pool design T1. A

similar density of data points was used for the design T2. The experimental sampling rate was set

to 15Hz, and the sampling time was 15 seconds (225 instantaneous measurements at each point).
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Figure 8.3: Experimental data points in design T1. Horizontal view.

In order to compute the power spectra more detailed data was obtained at some points. For

this purpose 5 representative points were chosen in the pool design T1, and 4 points in the pool

design T2, since the flow pattern is simpler in the latter one. The location of the data points is

defined in Figure 8.4 and in Table 8.2.

(a) Design T1. (b) Design T2.

Figure 8.4: Data points for computing the power spectra. Coordinates in Table 8.2.

Region Corner Central eddy Baffle Slot region Main flux

Data point P1 P2 P3 P4 P5

T1 (16,76) (66,66) (106, 54) (16,36) (46,36)

T2 (16,74) (66,54) — (11,14) (76,14)

Table 8.2: Data points for computing the power spectra. Coordinates in cm, relative to the reference system

shown in Figure 8.4.

The upper left corner of the pool (point P1) is a very quiet region, with small velocities and a

low turbulence level. Point P2 is located in the middle of the pool. The velocity here is generally

small, and, depending on the flow conditions, it can be the centre point of a large eddy. The

longitudinal baffle region (point P3) is an area with quite strong flow curvature. The highest

velocity and turbulent kinetic energy occur near the slot (point P4). The flow is accelerated just

before going through the slot and decelerated afterwards, producing a high amount of turbulence.
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At this point there is also some entrance of air in the flow, which generates even more turbulence

and makes the flow more complex. Finally, point P5 is located in the main flow stream across the

pool, where the velocity is quite large.

The fluctuating velocity frequency spectrum (power spectrum) allows us to know how the

turbulent kinetic energy is distributed over different frequencies. It permits us also to check the

isotropy of the Reynolds stresses in both the large and the small turbulent scales. In order to be able

to compute the largest frequency range of the spectrum, the sampling rate was set to 50Hz (the

maximum achieved with the ADV used in the experiments), although higher frequencies would be

helpful, as will be shown in the results. Around 50000 samples were obtained at each point, over

a time of 15 minutes.

8.3 Statistical analysis of the velocity field

8.3.1 Turbulent scales

In flows where the Reynolds number is large enough and turbulence is in a local equilibrium

state, it can be assumed a separation of the small (dissipative) and the large (energetic) fluctuating

scales. The turbulent kinetic energy is mainly contained in the large scales, and it is transported

through the inertial subrange to the small scales, where the dissipation of turbulent energy into

internal energy occurs. In this situation the energy flux from the energetic to the dissipative scales

is approximately equal to the dissipation rate. This picture of the energy spectrum is originally due

to Kolmogorov [73]. Due to the link between the large and the small scales, the order of magnitude

of the dissipation, which occurs mainly in the smallest scales of motion, can be estimated from the

large velocity and length turbulent scales as:

ε ∼ u3
s

Ls

(8.1)

where ε is the dissipation rate of turbulent energy, us is the fluctuating velocity scale, and Ls is the

turbulent integral length scale. The fluctuating velocity scale us is defined as the root mean square

of the fluctuating velocity. The most commonly used turbulent length scales are defined by the

normal Reynolds stresses as:

Lii =
1

u′2
i

∫
V

Rii(x, t;x + r, t)dr (8.2)
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where Lii (i = 1, 3) is the integral length scale for each spatial direction, and Rii is the spatial

correlation function, which is defined by:

Rii(x, t;x + r, t) = u′
i(x, t)u′

i(x + r, t) (8.3)

In a practical case the volume integral in Equation 8.2 extends to the flow boundaries. In

order to compute Rii in a stationary flow, a large number of simultaneous spatial data points are

necessary. In our case a rough estimation of Ls will be made from the water depth, which is the

largest size that a 3D turbulent eddy may have in the fishway.

The fluctuating velocity scale varies widely over the pool, reaching its highest values near

the slot. In that region it can be roughly estimated from the experimental data as us ≈ 0.5m/s.

Assuming a length scale of approximately Ls ≈ 0.5m gives an estimated dissipation rate of:

ε ≈ 0.25m2/s3 (8.4)

The Kolmogorov’s spatial (ηk) and time (τk) micro-scales, which are the smallest significant

scales of motion in the flow, are defined as:

ηk =

(
ν3

ε

)1/4

τk =
(ν

ε

)1/2

(8.5)

Considering that the kinematic viscosity of water is approximately 10−6m2/s, and using the

estimation of the dissipation rate given by Equation 8.4, the estimated Kolmogorov micro-scales

are:

ηk ≈ 5 × 10−2 mm τk ≈ 1msec (8.6)

The sampling frequency needed in order to resolve this time scale is 2000Hz. Although this is

only a rough approximation, the sampling frequency of the ADV (50Hz) is much lower. Therefore,

in the near slot region, where the turbulent kinetic energy is highest, it will not be possible to

resolve the smallest time scales in the flow, as it will be shown in the plots of the frequency

spectra. Furthermore, the spatial micro-scale is much smaller than the sampling volume of the

ADV, which is a cylinder of 6mm length. In other regions of the pool the turbulence level is much

lower (us ≈ 0.1m/s), and the time micro-scale is approximately 0.03s, which can be resolved

with a sampling frequency of 60Hz. These estimations show that the size of the turbulent scales

which can be resolved with the ADV depends strongly on the specific spatial point considered, as

it will be shown in the power spectra plots.
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8.3.2 Errors due to the finite size of the control volume

As it has just been shown, in some regions of the flow the Kolmogorov micro-scale is two orders

of magnitude smaller than the length of the ADV’s control volume. This is an important limitation

when trying to compute the smallest scales in the wave-number spectra. However, when interested

only in the mean velocity and turbulent kinetic energy this restriction is not so important. The

1D Taylor expansion of the real mean velocity (u) over the measuring point is given by:

u(x) = u(x0) +
∂u

∂x

∣∣∣∣
x0

(x − x0) +
∂2u

∂x2

∣∣∣∣
x0

(x − x0)
2

2
+ θ(Δx3) (8.7)

where x0 is the measuring point. The measured mean velocity is proportional to the average value

of the real mean velocity within the control volume. Averaging Equation 8.7 over the sampling

volume yields:

um ≈ u(x0) +
∂2u

∂x2

∣∣∣∣
x0

d2

24
+ θ(d4) (8.8)

where um is the measured mean velocity, and d is the size of the control volume. The relative error

in the measured velocity is given by:

um − u(x0)

u(x0)
≈ 1

u(x0)

∂2u

∂x2

∣∣∣∣
x0

d2

24
+ θ(d4) (8.9)

Considering that the ADV’s control volume size is 6mm, the relative error in the measured

instantaneous velocity given by Equation 8.9 is negligible compared with the variability of the

estimator due to its random nature.

8.3.3 Errors in the turbulence measurements due to Doppler noise

The Doppler noise is a source of error when measuring turbulence with any Doppler-based backscat-

ter system [87]. The relative importance of this error depends on the fluid characteristics as well

as on the flow conditions (velocity, presence of particles in the flow, bubbles, . . . ). The errors

introduced when measuring the turbulence field with an ADV were studied by Lohrmann [87],

concluding that the turbulent energy given by the ADV is larger than the real turbulent energy in

the flow, and that the spectrum of the horizontal velocity components is biased high for frequencies

above 5Hz (meaning by horizontal components those ones perpendicular to the ADV’s longitudi-

nal axis). Nonetheless, he noticed that the errors in the turbulent energy can be neglected in high

energy flows.

Nikora [96] also studied the ADV measurements of turbulence under several flow conditions,

obtaining the following conclusions: (1) the ADV noise is Gaussian white, which corresponds to

an horizontal line in the power spectrum; (2) the noise in the two horizontal components (which
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are perpendicular to the ADV’s longitudinal axis) is up to 30 times larger than the noise in the

vertical component (which is parallel to the ADV’s axis), and that is due to the sensor geometry;

(3) there is a great increase of noise in the presence of bubbles (up to 5 times in the experiments

by Nikora); (4) the noise level depends on the flow velocity.

The findings of Lohrmann and Nikora are of great interest, specially those ones regarding the

non-isotropic distribution of the noise between the three velocity components, and the increase of

noise due to the presence of bubbles in the flow. Considering the air entrance which occurs near

the vertical slot in the fishway, it should be expected a high level of noise in that region. On the

other hand, the high energy of the flow near the slot reduces the relative importance of this noise

in the measured Reynolds stresses and turbulent kinetic energy. Nevertheless, it should still be

considered when looking at the high frequency range of the power spectra.

Regarding the non-isotropic distribution of the noise, it is important the remark made by Nikora

about the fact that this effect is due to the sensor geometry. Since in the experimental measurements

the longitudinal axis of the ADV was positioned in the transverse direction of the fishway (y -

direction), it should be expected a lower level of noise in this component than in the other two.

The noise level is difficult to estimate, specially considering its dependence on the flow prop-

erties. However, its presence can sometimes be detected by a tendency of the power spectra to be

horizontal in the high frequency range (since the ADV noise distribution is Gaussian white, the

noise spectrum is an horizontal line through all the spectral range, which establishes a minimum

value in the measured spectra).

8.3.4 Time integral scale

When sampling at a fixed spatial point in a steady turbulent flow, a stochastic set of data is obtained.

In stationary random ergodic processes, as turbulent flow, the ensemble average can be estimated

from a finite set of data as a time average. In this way, the mean velocity is estimated for each

spatial component as:

uT =
1

T

∫ T

0

u(t) dt ≈ 1

N

N∑
i=1

ui (8.10)

where u(t) is the instantaneous velocity, uT is the estimator of the mean velocity, and N is the

number of statistically independent realisations. If the sampling rate is too high, two consecutive

samples may not be statistically independent, in which case they do not contribute to the conver-

gence of the statistical estimator. The time interval between two statistically independent samples

depends on the time integral scale (Tint), which is defined as:

Tint =

∫ ∞

0

ρ(τ) dτ ρ(τ) =
u′(t)u′(t + τ)

u′2 (8.11)
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where u′ is any component of the fluctuating velocity, and ρ is the auto-correlation coefficient.

From Equation 8.11, a time integral scale can be defined for each spatial direction. The mean

estimator given by Equation 8.10 is unbiased, being its variability given by:

ε2
uT

=
σ2

uT

u2 =
2Tint

T

σ2
u

u2 (8.12)

where εuT
is the variability of the mean estimator uT , σ2

uT
is the variance of uT , and σ2

u is the

variance of the instantaneous velocity. According to Equation 8.12, only the samples detached by

a time interval larger than 2Tint contribute to the convergence of the mean, and therefore, can be

considered to be statistically independent.

The time integral scale and auto-correlation curve give also information about the size of the

coherent structures which are present in the flow. A correlation curve that goes quickly to zero

is indicative of very weak correlated turbulence and chaotic fluctuations. In such a case the time

integral scale takes very low values. On the other hand, a correlation curve that remains above zero

for some time before falling down reveals the presence of large coherent structures in the flow. In

that case the large fluctuations are not completely chaotic but organised in a coherent motion.

Although this analysis is rather qualitative, it helps to characterise the turbulence properties in the

different regions of the pool with just one point data sets. A more exhaustive characterisation of

the turbulent structures in the fishway flow would need very accurate instantaneous measurements

in a refined spatial mesh.

(a) Design T1. (b) Design T2.

Figure 8.5: Auto-correlation curves for the fluctuating velocity. Q=105l/s. z=5cm.

The time integral scale in the fishway is highly dependent on the local flow conditions, varying

widely within the different regions of the pool (Tables 8.3 and 8.4). It should be noticed that the

time integral scale takes always much lower values in the vertical component (Tint,w) than in the

horizontal components (Tint,u, Tint,v), which means that the turbulence is much less correlated in

the vertical direction than in the horizontal directions. This should be contrasted with the fact that,
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as it will be shown later on in this section, the vertical Reynolds stress w′2 is much more energetic

than the horizontal stress v′2.

P1 P2 P3 P4 P5

Tint,u 0.380 - 1.900 0.046 - 0.290 0.270 - 1.050 0.012 - 0.085 0.026 - 0.110

Tint,v 0.330 - 1.200 0.110 - 0.270 0.190 - 0.360 0.047 - 0.110 0.044 - 0.089

Tint,w 0.110 - 0.220 0.022 - 0.067 0.034 - 0.190 0.012 - 0.024 0.019 - 0.028

Table 8.3: Time integral scales (sec). Minimum and maximum values for several discharges and heights

above the bottom. Design T1.

P1 P2 P4 P5

Tint,u 0.150 - 0.930 0.350 - 0.750 0.003 - 0.018 0.016 - 0.031

Tint,v 0.360 - 0.630 0.280 - 0.520 0.005 - 0.018 0.005 - 0.024

Tint,w 0.060 - 0.220 0.160 - 0.340 0.005 - 0.022 0.007 - 0.021

Table 8.4: Time integral scales (sec). Minimum and maximum values for several discharges and heights

above the bottom. Design T2.

8.3.5 Water depth field

In all the experiments, for a given discharge, the mean water depth at the middle cross section was

the same in all the pools of the fishway model. This was achieved by controlling the water depth

at the downstream boundary. Under these flow conditions the water surface elevation is almost

constant in each pool, and the water depth gradient is similar to the bed slope, except in the near

slot region, where there is a strong gradient in the water depth (Figure 8.6). The minimum water

depth occurs just downstream the inlet slot, due to the vertical acceleration of the flow in this

region.

(a) Design T1. Q=105l/s. (b) Design T2. Q=65l/s.

Figure 8.6: Experimental water depth field h(cm). Designs T1 and T2.
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8.3.6 Mean velocity field

The mean velocity field in both pool designs is almost two-dimensional. The vertical velocity is

very small compared to the horizontal velocity (Figures 8.7 and 8.8). The flow in the pools can

be roughly described as a confined jet between two slots. In the pool design T1 the jet is strongly

curved, creating two large recirculation areas, one on each side of the jet (Figure 8.7). On the other

hand, the curvature of the jet in the design T2 is much smaller, being the upper recirculation region

much larger than the lower one (Figure 8.8).

(a) Horizontal velocity |Vh|(cm/s). (b) Vertical velocity |Vz|(cm/s).

Figure 8.7: Experimental horizontal and vertical velocity fields. Design T1. Q=105l/s. z=25cm.

(a) Horizontal velocity |Vh|(cm/s). (b) Vertical velocity |Vz|(cm/s).

Figure 8.8: Experimental horizontal and vertical velocity fields. Design T2. Q=65l/s. z=20cm.

The horizontal velocity field is almost independent of the height above the bottom of the pool

(Figure 8.9). The vertical profile of the velocity is rather uniform, except near the free surface

due to the air-water interface influence, and near the bottom of the pool due to the bed surface

influence.

Since the velocity field is rather homogeneous in the vertical direction, it is reasonable to

work with a depth averaged velocity, as it is done in the shallow water models. In addition, the
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(a) Design T1. Q=105l/s. x=26cm. (b) Design T2. Q=65l/s. x=36cm.

Figure 8.9: Experimental cross sections of the longitudinal velocity Vx(cm/s) at several heights above the

bottom.

fact that the vertical velocity and acceleration are small, enhances the quasi-hydrostatic pressure

distribution, which is the main shallow water approximation (see section 2.3). These features apply

to the whole range of discharges used in the experiments.

8.3.7 Turbulent kinetic energy field

The turbulence intensity (Tk =

√
k

|u| , where |u| is the module of the mean velocity) is very high in

all the pool, specially near the inlet slot, where it reaches values larger than 100%. Turbulence is

mainly generated in the slot region, where the largest velocity gradients occur, and it is strongly

convected downstream following the confined jet which crosses the pool. Since the mean velocity

field is strongly two-dimensional, it could be expected that the turbulence field was 2D too, which

would mean that the longitudinal and transverse Reynolds stresses were larger than the vertical

one (u′2 ≈ v′2 >> w′2). However, this is not the case. Furthermore, the transverse Reynolds

stress v′2 is always the less energetic one. This is because the two main sources of turbulence as

the flow passes through the slot are the mean velocity gradients and the entrance of air in the flow.

Although the mean velocity field is quasi-2D, the strong curvature of the flow, the recirculation

eddies, and the stagnation regions appearing in the pool produce an anisotropic distribution of

the turbulent energy amongst the two horizontal Reynolds stresses (u′2 and v′2). At the same

time, the air bubbles and the local 3D features of the flow in the slot region contribute strongly

to the production of the vertical turbulent stress w′2, which reaches large values all over the pool,

specially near the slot (Figure 8.10). Since the longitudinal direction in the experiments is parallel

to the fishway bed, the air bubbles contribute in a lower degree to the production of u′2. Once the

turbulence is produced in any Reynolds stress, it is distributed amongst the others stresses via the

196



CHAPTER 8. TURBULENT FLOW IN A VERTICAL SLOT FISHWAY

(a) k(cm2/s2). (b) u′2(cm2/s2).

(c) v′2(cm2/s2). (d) w′2(cm2/s2).

Figure 8.10: Experimental Reynolds stresses fields. Design T2. Q=65l/s. z=20cm.

pressure-strain term, in a process which depends on the particular flow conditions. It is important

to remark that the effects of the air bubbles in the flow are not taken into account in the numerical

model.

Figures 8.11(a-c) show the longitudinal evolution of the horizontal Reynolds stress u′2. At the

cross section x = 26cm (Figure 8.11(a)), extremely large values of u′2 are reached in the slot re-

gion, specially near the free water surface (z = 15 and 20cm). Probably the air bubbles in the flow,

which are present in a larger concentration near the free surface, contribute to this turbulence peak.

Just 20cm downstream (Figure 8.11(b)) the peak value has diminished considerably, appearing

mainly at z = 20cm. Further downstream, at x = 86cm (Figure 8.11(c)), the Reynolds stresses

are rather homogeneous in the vertical direction, and the peak value has almost disappeared. The

behaviour of u′2 should be compared with the transverse Reynolds stress v ′2 (Figures 8.11(d-f)).

The peak in the slot region is not so strong in the v′2 profiles, the values are much lower all over

the pool, and the profiles are more uniform over the vertical direction.

Figure 8.11 shows clearly that turbulence is strongly anisotropic all over the pool. In order to
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(a) u′2(cm2/s2). x=26cm. (b) u′2(cm2/s2). x=46cm. (c) u′2(cm2/s2). x=86cm.

(d) v′2(cm2/s2). x=26cm. (e) v′2(cm2/s2). x=46cm. (f) v′2(cm2/s2). x=86cm.

(g) w′2(cm2/s2). x=26cm. (h) w′2(cm2/s2). x=46cm. (i) w′2(cm2/s2). x=86cm.

Figure 8.11: Experimental cross sections of the Reynolds stresses at several locations and heights. De-

sign T1. Q=65l/s. Notice the different scales in the horizontal axes.

quantify the three-dimensional isotropy, an isotropy coefficient Ic has been defined as:

Ic = 1 − (u′2 − v′2)2 + (u′2 − w′2)2 + (v′2 − w′2)2

8k2
(8.13)

=
3

4

u′2 v′2 + u′2 w′2 + v′2 w′2

k2

If the turbulence is completely isotropic in the three spatial directions, the isotropy coefficient

equals one. The more anisotropic the turbulence is, the smaller the isotropy coefficient is. The
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level of isotropy at any point depends mainly on its location in the pool. The variations of the

isotropy level with the height above the bottom and with the total discharge are smaller than the

variations between the different regions of the pool. Table 8.5 shows the range in which the isotropy

coefficient Ic varies at the spatial points defined in Figure 8.4. In both pool designs the most

isotropic region is the upper left corner of the pool (point P1), while it is in the slot region (point P4)

and in the main jet stream (point P5) where turbulence is more anisotropic.

Design T1 Design T2

P1 P2 P3 P4 P5 P1 P2 P4 P5

max 0.95 0.87 0.90 0.78 0.85 0.91 0.94 0.76 0.82

min 0.92 0.79 0.75 0.74 0.76 0.89 0.85 0.30 0.62

average 0.94 0.83 0.82 0.76 0.81 0.90 0.90 0.62 0.71

Table 8.5: Isotropy coefficient. Minimum, maximum and average values.

The strong anisotropy between the horizontal Reynolds stresses (u′2 and v′2) is a handicap to

the performance of the linear eddy viscosity models, which assume an isotropic eddy viscosity. The

large value of the vertical Reynolds stress w′2, which is not considered in the shallow water models,

may affect the numerical results. Nonetheless, the relative importance of these flow features in

the numerical simulations cannot be assessed a priori, and will be discussed later on, when the

numerical results will be presented.

8.3.8 Spectral analysis

Several kinds of velocity spectra are often used in the experimental analysis of turbulent flows. In

general flow conditions, only the frequency spectrum (also called power spectrum) can be com-

puted from one point statistics. In homogeneous flows with a low turbulence intensity the Taylor’s

hypothesis can be used in order to obtain the one-dimensional wave-number spectrum from the

frequency spectrum [31]. In homogeneous isotropic turbulence the energy spectrum can also be

obtained from the frequency spectrum. On the other hand, in a highly non-homogeneous and non-

isotropic flow like the one in the fishway, a Proper Orthogonal Decomposition in space should be

done in order to decompose the flow field in different coherent structures or modes [53]. This kind

of analysis, which needs simultaneous measurements at different points in the pool, is beyond the

scope of this thesis. We will limit to the evaluation and analysis of the power spectra at the spatial

points defined in Figure 8.4.

Since the flow is stationary, a Fourier decomposition in time of the fluctuating velocity has

been made in order to compute the power spectra. Considering that the sampling rate is 50Hz at

periodic time intervals, the spectra obtained will extend up to 25Hz [55]. The Fourier Transform
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in time of the fluctuating velocity is defined as:

û(f) =

∫ ∞

−∞
u′(t)e−i2πft dt (8.14)

where f is the angular frequency (Hz), u′(t) is the fluctuating velocity, and û(f) is the Fourier

Transform of u′(t). The original velocity field can be reconstructed by the inverse Fourier Trans-

form, which is given by:

u′(t) =

∫ ∞

−∞
û(f)ei2πft df (8.15)

From the Fourier Transform of the fluctuating velocity, the power spectrum S(f) is defined as:

S(f)δ(fi − fj) = û(fi)û∗(fj) (8.16)

where δ(fi − fj) is the delta function, and û∗(f) is the complex conjugate of û(f). From the

definition of S(f) it can be shown that the power spectrum and the one-point time correlation

function B(τ) form a Fourier pair, i.e:

S(f) =

∫ ∞

−∞
B(τ)e−i2πfτ dτ B(τ) =

∫ ∞

−∞
S(f)ei2πfτ df (8.17)

where B(τ) is the one-point time correlation function, which is given by:

B(τ) = u(t)u(t + τ) (8.18)

The time correlation function B(τ) has already been used in the definition of the time integral

scale (Equation 8.11). It gives information about the life time of the coherent structures which are

present in the flow.

Since any sampled velocity field is a finite set of data, estimators of the Fourier Transforms

and power spectra are needed. The Fourier Transform of the fluctuating velocity can be estimated

from a finite record length as:

ûT (f) =

∫ T

0

u′(t)e−i2πft dt ≈
N−1∑
j=0

u′(jΔt)e−i2πfjΔtΔt (8.19)

where T is the measuring time, N is the total number of samples, Δt is the time step between

consecutive samples, and ûT (f) is a finite estimator of û(f). The resolution of the estimated

Fourier Transform is equal to Δf =
1

T
. For this reason the measuring time T should be large

enough to avoid loss of resolution. The frequency spectrum can be estimated from the Fourier
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Transform of the fluctuating velocity as:

ST (f) =
ûT (f)û∗

T (f)

T
(8.20)

The variance of the estimator ST (f) is given by:

σ2
ST

= S2(f) (8.21)

which is independent of the record length T . From Equation 8.21, the variability of the estimator

ST (f) is equal to 1, no matter how long the measuring time is. In order to diminish the variability,

several spectra computed from non-overlapping samples must be averaged, and the new estimator

is given by:

ST (f) =
ûT (f)û∗

T (f)

T
(8.22)

The variability of the estimator 8.22 decreases with the number of spectra used as:

εST
=

√
σ2

ST

S2
=

√
1

Nb

σ2
ST

S2
=

√
1

Nb

(8.23)

where Nb is the number of spectra (or non-overlapping blocks of data) used in the estimation.

Hence, in order to obtain a variability of εST
= 0.1, 100 blocks are needed, while for a variability

of εST
= 0.01, 10000 blocks should be used. It should be noticed that although the sampling

time (T ) does not have any influence on the variability of the estimator, it must be large enough to

avoid loss of resolution. Figure 8.12 shows the effect that the variability of the estimator has on

the computed power spectrum.

Using a finite record length to estimate the Fourier Transform of the velocity (Equation 8.19),

is equivalent to filter the real signal in the physical space with a rectangular filter of length T . An

alternative way to write Equation 8.19 is given by:

ûT (f) =

∫ ∞

−∞
ω(t)u′(t)e−i2πft dt (8.24)

where ω(t) is a filter function. The rectangular filter is given by:

ω(t) =

⎧⎨
⎩1 if t ∈ (0, T )

0 otherwise
(8.25)

which introduced in Equation 8.24 recovers Equation 8.19. Since the rectangular filter is discontin-

uous in the physical domain, it might produce secondary lobes and suppress some of the harmonics

in the spectral space. For that reason other filters have been proposed, as for example the Hanning’s
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(a) 8 blocks. εST
= 0.354. (b) 16 blocks. εST

= 0.250.

(c) 32 blocks. εST
= 0.177. (d) 64 blocks. εST

= 0.125.

Figure 8.12: Effect of the number of blocks used to compute the power spectrum. Design T2. Point P2.

Q=105l/s. z=5cm.

filter and the Gaussian filter, among others. The Hanning’s filter function, for example, is given

by:

ω(t) =
1

2

[
1 + cos

(
2π(t − T/2)

T

)]
(8.26)

In our case the filter used has little influence on the computed spectrum, as it is shown in

Figure 8.13. All the spectra shown in this chapter have been computed with the rectangular filter.

Kolmogorov [73] established a very well known theory about the turbulence spectrum be-

haviour in incompressible large Reynolds number flows. According to Kolmogorov’s theory, if

turbulence is fully developed and the Reynolds number is large enough, the turbulence spectrum

can be split into three different subranges, namely: the energetic, the inertial, and the dissipation

subranges. The energetic subrange, which corresponds to the large turbulent scales, is where tur-

bulence is produced by the Reynolds stresses acting against the mean velocity gradients. Large

coherent turbulent structures, with low frequencies, may be contained in this region of the spec-

trum. In the dissipation subrange (smallest scales) the turbulent kinetic energy is dissipated into
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(a) Rectangular filter. (b) Hanning’s filter.

Figure 8.13: Effect of the filter used on the computed power spectrum. Design T2. Point P2. Q=105l/s.

z=5cm.

internal energy due to viscous friction. Oscillations of high frequency and small wave length oc-

cur. The energetic and dissipation subranges are linked by the inertial subrange, which transports

the energy from the large scales to the small scales in a process known as cascade energy transfer.

These three spectral subranges appear distinctly only when the Reynolds number is large enough.

As the Reynolds number decreases the inertial subrange tends to disappear, and the energetic and

dissipation subranges merge together. From dimensional analysis it can be argued that the be-

haviour of the wave-number spectrum in the inertial subrange is given by:

E(k) ∼ ε2/3k−5/3 (8.27)

where E(k) is the wave-number energy spectrum, ε is the dissipation rate of turbulent energy,

and k is the wave-number. In nearly homogeneous flows with a not very high turbulence level,

the Taylor’s approximation [31] can be used to transform the wave-number spectrum into the

frequency spectrum as:

S(f) =
C

(2π)2/3
U2/3ε2/3f−5/3 (8.28)

where S(f) is the frequency spectrum, U is the convective velocity, f is the angular frequency

(Hz), and C is a proportionality constant. Kraichnan [74] proposed a value of C = 0.5 for fully

developed turbulence. The −5/3 power law of the spectrum is usually associated with a fully

developed 3D turbulent flow. Even though turbulence is always 3D, there are several studies about

the behaviour of the energy spectra in 2D turbulence, understanding by 2D turbulence flows in

which two of the normal Reynolds stresses are clearly larger than the third one. In those situations,

2D coherent structures appear distinctively in the flow. This may be the case of some shallow free

surface flows, but it is not the case in the fishway flow, where, as it is shown by the experimental

results, the vertical Reynolds stress is even larger than the transverse one. The turbulence in the
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fishway is strongly 3D, even though the mean velocity field is quasi-2D.

In order to evaluate the power spectra, the experimental data has been split into 64 blocks,

which gives a variability of the estimated spectra of εST
= 0.125. A rectangular filter window

has always been used. The record time per block is approximately 15 seconds, which gives a

frequency resolution of 0.067Hz. Since the sampling rate is 50Hz, the spectra obtained will

extend up to 25Hz, which is an important limitation, specially for the velocity components with

a high turbulence level, where a large part of the spectrum might be missed. The size of the

spectrum which is resolved is related to the turbulent kinetic energy. Assuming a constant length

scale, the value of the Kolmogorov’s micro-scale depends on the turbulent kinetic energy roughly

as ηk ∼ k−3/4, which implies that in the regions with a higher turbulent energy, the resolved part of

the spectrum is smaller. This limitation is clearly shown in Figures 8.14 and 8.15. All the inertial

and dissipation subranges are missed from the spectra at point P4, which is situated in the most

energetic region of the pool, just downstream the inlet slot. On the other hand, at points P1 and

P2, which are situated in a more quiet region, the spectra show very clearly the −5/3 power law,

specially on the transverse component v′2, which is the less energetic one.

Another important factor which should be considered when analysing the spectra is the high

noise level which is present in the u′2 and w′2 components, due to the air bubbles present in the flow.

As it has been argued in section 8.3.3, due to the ADV geometry the noise in these two components

is likely to be larger than the noise in the transverse component. The ground noise level in u′2 and

w′2 is clearly shown in the spectra at points P1 and P2 in both pool designs (Figures 8.14(a,b) and

8.15(a,b)). This might explain why the −5/3 power law does not appear so clearly in the u′2 and

w′2 spectra as it does in the v′2 spectra.

The less energetic region in the pools is the upper left corner, which is represented by point P1.

At that point the noise level deforms the dissipation subrange in the u′2 and w′2 spectra, establishing

a ground value of approximately 8m2/s for frequencies higher than 5Hz. The −5/3 power law

appears very clear in the v′2 spectra, which does not show any appreciable level of noise in the

resolved part of the spectrum. The region between the longitudinal baffle and the upper right

corner in the design T1 (point P3) is not shown in Figure 8.14, but its features are very similar to

those of point P1. In the central eddy (point P2) and in the main jet stream region (point P5) there

is a strong anisotropy in the large scales. These regions of the pool have a larger concentration of

air bubbles, which establishes a ground noise level around 20−30cm2/s in the u′2 and w′2 spectra.

The slot region (point P4) is the most energetic, as well as the one which shows the strongest

anisotropy in the Reynolds stresses. None of the spectra show the −5/3 power law, probably

because all of them are abruptly cut at 25Hz, missing the entire inertial range.
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(a) Point P1. Q=115l/s. z=45cm. (b) Point P2. Q=105l/s. z=5cm.

(c) Point P4. Q=115l/s. z=5cm. (d) Point P5. Q=85l/s. z=5cm.

Figure 8.14: Frequency spectra at several locations. Design T1.

8.4 Similarity analysis of the flow in a vertical slot fishway

Similarity solutions are a very interesting issue in the study of fluid flows, since they permit to

characterise the flow field in a given geometry under a wide range of boundary conditions by a few

non-dimensional parameters. Once the flow field is known in a specific geometry for a specific set

of boundary conditions, similarity solutions permit to obtain the flow field in other situations with

the same geometry shape, but different global dimensions and boundary conditions. In this section

we sill seek approximate similarity solutions for the flow in the vertical slot fishway designs T1

and T2.

In section 2.3.6, the non-dimensional depth averaged shallow water equations have been ob-

tained, which in a general case depend on three non-dimensional parameters: the Froude number,

the horizontal Reynolds number (based on the horizontal length scale), and a non-dimensional

bed friction parameter which accounts for the vertical shear stress. In a similar way, the 3D shal-

low water equations depend also on the Froude number, on the horizontal Reynolds number, and

on the vertical Reynolds number (based on the water depth), which is the equivalent to the non-
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(a) Point P1. Q=125l/s. z=25cm. (b) Point P2. Q=105l/s. z=5cm.

(c) Point P4. Q=125l/s. z=25cm. (d) Point P5. Q=85l/s. z=5cm.

Figure 8.15: Frequency spectra at several locations. Design T2.

dimensional friction in the depth averaged equations. In general 3D flow conditions, the vertical

and horizontal Reynolds number dependence establishes the proportionality between the length

scales in the three spatial directions. However, in some free surface flows the vertical shear stress

has little influence on the mean flow, and therefore, similarity solutions may be obtained for differ-

ent vertical Reynolds number (or non-dimensional bed friction, in the case of the depth averaged

equations).

In the fishway designs studied in this chapter the strong horizontal velocity gradients have much

more influence on the flow structure than the bed friction, which, due to the smooth flume surface,

can be neglected in the momentum equations. Hence, the non-dimensional mean flow equations

depend only on the Froude number and on the horizontal Reynolds number, and thus, in order to

obtain full similarity solutions these two parameters should be kept constant. However, it has been

found by Puertas et al. [111] that the velocity field in vertical slot fishways is almost independent

of the water depth. This means that very similar solutions of the mean flow equations are obtained

for different Froude numbers, defined as Fr =
|U|√
gh

. This suggests that another parameter rather
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than the total water depth may be used as vertical length scale in order to obtain quasi-similarity

solutions.

An hydrostatic pressure distribution will be assumed, which justifies the use of the 3D shallow

water equations to describe the flow field. Notice that this is only an assumption which must be

confirmed by the experimental results. The total water depth will be decomposed as:

h(x, y) = Ho + Hsfh(x, y) (8.29)

where H0 is a constant value, Hs is a water depth scale, and fh(x, y) is a water depth similarity

function. All the other flow variables can be scaled as it has been done in section 1.1.3, i.e.:

u(x, y, z) = usfu(x, y, z) v(x, y, z) = vsfv(x, y, z) w(x, y, z) = wsfw(x, y, z) (8.30)

zb(x, y) = Zsfz(x, y) u′
iu

′
j = Rij,sfuiuj

(x, y, z)

x = Lxx
∗ y = Lyy

∗ z = Lzz
∗

where us, vs, ws are the velocity scales, Zs is the bed elevation scale, and Rij,s are the Reynolds

stresses scales. The length scales Lx, Ly, Lz are defined by the problem geometry. It should

be noticed the difference between the vertical length scale Lz and the water depth scale Hs in

Equations 8.29 and 8.30. A proper definition of Lz would be the maximum water depth in the pool

Lz = hmax. In the case of the fishway, the bed elevation and horizontal length scales are linked by

the bed slope θs, as:

θs =
Zs

Lx

(8.31)

It is straightforward to show that using Equations 8.29 and 8.30 in the 3D shallow water equa-

tions yields the following similarity relations:

us

Lx

∼ vs

Ly

∼ ws

Lz

(8.32)

u2
s

Lx

∼ gHs

Lx

∼ gZs

Lx

∼ νus

L2
x

∼ νus

L2
y

∼ νus

L2
z

∼ Ruu,s

Lx

∼ Ruv,s

Ly

∼ Ruw,s

Lz

According to the similarity relations given by Equation 8.32, the only terms in the momentum

conservation equation which depend on the vertical length scale are the turbulent and viscous

vertical shear stresses (
Ruw,s

Lz
, νus

L2
z

). The vertical homogeneity of the flow in the fishway may reduce

the importance of the vertical shear stresses to a small layer near the bottom of the pool. For large

water depths, the influence of this layer on the whole flow pattern is small, i.e. the bed friction

effect on the mean flow is negligible. Nevertheless, only the experimental results may confirm this

proposition. With this hypothesis, the dependence of the momentum equations on the total water
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depth Lz is eliminated. Assuming also that the wall friction has little influence on the global flow

pattern in the pools, i.e. the viscous diffusion is negligible in the momentum equations, the only

scale relations which remain from Equation 8.32 are:

Hs ∼ Zs us ∼
√

gZs Ruu,s ∼ u2
s Ruu,s ∼ usvs (8.33)

It is important to notice that, according to the scale relations 8.33, it is the scale Hs, and not the

total water depth, which is proportional to the bed elevation scale Zs. Computing the water depth

with Equation 8.29 in two different spatial points yields:

h(x1, y1) = Ho + Hsfh(x1, y1) (8.34)

h(x2, y2) = Ho + Hsfh(x2, y2)

From Equations 8.33 and 8.34, the relation between the water depth at any two points in the

pool is given by:

h(x2, y2) = h(x1, y1) + Zs (fh(x2, y2) − fh(x1, y1)) (8.35)

The most straightforward conclusion from Equation 8.35 is that, for a given bed elevation

(Zs = cte), the relation between the water depth at any two points is a straight line with slope 1.

This is in direct agreement with the results of Puertas et al. [111], who found the relation between

several characteristic water depths in the fishway designs T1 and T2 (Table 8.6).

Design hmin hb hmax

T1 0.97hm-0.38b 1.00hm+0.29b 1.02hm+0.61b

T2 0.92hm-0.41b 0.99hm+0.28b 1.03hm+0.48b

Table 8.6: Experimental relationships between water depths in the fishway. Bed slope 10.054%. hmin:

minimum water depth in the pool; hmax: maximum water depth in the pool; hb: water depth at the slot; hm:

mean water depth in the middle section of the pool. (From Puertas et al. [111]).

The flow discharge through the slot can be approximated as:

Q ≈ b

∫ hb

0

ub dz = b

∫ hb

0

usfu(xb, yb, z) dz = Cbushb (8.36)

where hb is the water depth in the slot, ub is the velocity in the slot, and C is a constant equal to

the average value of fu in the slot. Using relations 8.33 yields the following water discharge:

Q = C
√

gb2Lxθshb (8.37)

where θs =
Zs

Lx

is the bed slope. The constant C depends only on the geometry of the pool. It

is common to define a discharge scale Qs which depends only on the geometry of the pool, and
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not on the water depth. Considering that the slot width b is proportional to the length scale Lx, a

logical choice for Qs from Equation 8.37 is given by:

Qs =
√

gb5θs (8.38)

which, introduced into Equation 8.37 gives the linear relation:

Q

Qs

= C ′hb

b
(8.39)

The discharge scale given by Equation 8.38 has been used by Puertas et al. [111] and Ra-

jaratnam et al. [114]. Kamula [68] uses a slightly different expression for the non-dimensional

discharge, Qs =
√

gb2L3
xθs, which is also a logical choice from Equation 8.37, and leads also to a

linear relation between the non-dimensional discharge and the water depth.

It is quite common to use the water depth in the middle of the fishway hm instead of the water

depth in the slot hb in Equation 8.39. Using Equation 8.29 for the water depth, the expression for

the non-dimensional discharge becomes:

Q

Qs

= C ′
(

hm

b
+

Zs(fh(xb, yb) − fh(xm, ym))

b

)
(8.40)

where hm is the water depth in the middle of the fishway. Expression 8.40 is not valid for very

small water depths (hm → 0), since in that case the vertical stress becomes important in the

development of the flow patterns, and additional constraints over the total water depth appear from

Equation 8.32. This means that a linear relation like Equation 8.39 cannot be applied for small

water depths.

Equation 8.40 allows an offset given by C ′Zs(fh(xb, yb) − fh(xm, ym))

b
when adjusting the

experimental data for large values of hm. According to the relation between hb and hm given in

Table 8.6, this offset is positive for both pool designs, and its value is very small compared to the

main term C ′hm

b
. Hence, Equation 8.40 can be simplified as:

Q

Qs

≈ C ′hm

b
(8.41)

The fact that the scalings derived in this section are in accordance with the experimental re-

sults supports the approximations of hydrostatic pressure distribution and minor importance of the

vertical stresses, at least as a global characteristic of the flow pattern, and justifies the use of the

shallow water equations when modelling the fishway flow.
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8.5 Numerical model

Three depth averaged turbulence models have been used in the numerical simulations (mixing

length, k−ε of Rastogi and Rodi, and algebraic stress model) in order to determine the differences

in the computed velocity and turbulence fields. All the simulations have been done with the orig-

inal constants of the models, without any empirical calibration. Some hydraulic manuals present

empirical eddy viscosities which depend on the flow conditions. This is a very aleatory parameter

which can be modified in an artificial way in order to match the experimental results, but always

with an a priori knowledge of the results which are being seek. Molls et al. [93] are able to compute

the recirculation region behind a spur-dike using a constant eddy viscosity approach, choosing its

value by trial and error in order to match the experimental results. The fact of choosing a specific

constant eddy viscosity have so much influence on the results that it can lead to erroneous conclu-

sions. For this reason no simulations at all have been done with this approach, not even to make

any comparison with the results given by the turbulence models.

All the flow field plots shown in this section are referred to the system of reference used in

Figure 8.16. All the cross section plots are referred to the system of reference defined in Figure 8.4.

The only difference between both systems of reference is the origin of the x - axis. In the flow field

plots the x - axis is globally defined for the whole fishway model, while in the cross section plots

it is locally defined for the specific pool considered.

8.5.1 General comments on the validity of the modelling hypothesis

Before doing the analysis of the numerical simulations, the experimental results presented in sec-

tion 8.3 will be used here in order to assess the validity of the modelling assumptions which are

done in the depth averaged shallow water equations and in the turbulence models.

The small magnitude of the vertical velocity, as well as the homogeneity of the mean velocity

and turbulent kinetic energy in the vertical direction (except in the near slot region), justify the

possibility of using a depth averaged model to simulate the flow in the fishway. In addition, the

similarity analysis presented in section 8.4 supports the hypothesis of quasi-hydrostatic pressure

distribution. Nevertheless, some problems may appear near the slot, where the vertical velocity

is relatively high due to the large water surface gradient. This produces a depression in the free

surface elevation which may not be accurately resolved by a depth averaged model.

The hypothesis of fully developed turbulence, which is made in all the turbulence models used

in this thesis, is clearly fulfilled all over the fishway. On the other hand, the anisotropy between the

transverse and longitudinal Reynolds stresses is a drawback to the linear eddy viscosity models.

The large value of the vertical Reynolds stress, which is of the same order of magnitude as the

horizontal turbulent stresses, is also an inconvenience, since its possible effects on the mean flow

are not considered in the depth averaged equations.
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Considering the strong horizontal velocity gradients in the flow, it is clear that the turbulent

energy is mainly produced by horizontal shear strain, and not by bed friction, and therefore, the

bed friction coefficient does not play an important role in the turbulence field.

Although no direct check has been made, the Boussinesq hypothesis is expected to work rea-

sonably well in the upper part of the pools (points P1 and P3 in Figure 8.4), where the turbulence

is nearly isotropic, and a clear separation between energetic and dissipative scales appear in the

spectra. On the other hand, the eddy viscosity assumption should not be expected to perform well

near the slot neither in the main jet stream (points P4 and P5 in Figure 8.4), where the flow is

strongly anisotropic.

8.5.2 Flow features

The structure of the flow in both pool designs can be described as a confined curved jet which

crosses the pool from the inlet to the outlet slot. On each side of the jet a recirculation eddy

appears. The size and strength of these eddies depend on the specific pool design. There are

several impinging areas in the pool, which may cause the realizability constraints in the turbulence

models to limit the eddy viscosity value (see sections 2.4.5 and 2.5.3).

From the experimental results it follows that for uniform flow conditions the velocity field in

both pool designs is almost independent of the total discharge. On the other hand, the water depth

is proportional to the flow discharge with an almost linear relation. Hence, the first feature we

should expect from the numerical model is to reproduce this behaviour. In order to prove so, three

different discharges covering almost the full range of experimental flow conditions have been used

in the computations: 35l/s, 65l/s and 105l/s.

The numerical model should also predict correctly the size of the two recirculation regions

which occur on both sides of the main jet. The upper eddy is generated by shear friction, resem-

bling a cavity flow. The eddy is driven by turbulent shear stress, and therefore, its prediction is

very dependent on the turbulence model used. The flow separates behind the inlet slot baffle and

the so-called lower eddy appears. Going through the outlet slot the flow is forced to reattach. The

correct identification of these eddies is of great importance from a practical point of view, since

they have a big influence guiding the fish through the pool.

The maximum velocity, which occurs in the vertical slot region, is another important flow

feature which should be correctly computed. It determines whether or not fishes are able to pass

from one pool to another. If the slot velocity is too high the fish may not be able to swim against

it.

A correct turbulence modelling is of great importance in the prediction of all the previously

described flow features. An excessively large turbulence level will diffuse too much the veloc-

ity profiles, tending to eliminate the recirculation eddies. On the other hand, a too low level of
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turbulent kinetic energy will sharpen the profiles too much, producing too large velocities. Nev-

ertheless, the sensitivity of the mean velocity field to the level of turbulence in the pool is not as

high as it could be expected, and therefore, good predictions of the mean flow field can be obtained

even if the resolution of the turbulence field is not highly accurate. This is a usual characteristic

of RANS turbulence models, which tend to predict better the mean flow field than the turbulent

kinetic energy field.

It should be remarked the effect that the accuracy of the numerical scheme has on the results.

An order one scheme produces to much numerical diffusion unless an extremely fine mesh is used.

Therefore, the results with such a scheme are very dependent on the mesh size. This dependence

is even larger if the turbulence level is low. For a certain mesh resolution, an order one scheme

without turbulence modelling may give a rather accurate velocity field, just because the numerical

diffusion for that particular mesh size is approximately equal to the real turbulent diffusion. Such

results are completely erroneous from a physical as well as from a mathematical point of view. All

the simulations presented in this chapter have been done with a second order scheme.

The only empirical parameter which shows up in the mean flow equations is the bed friction

coefficient. It turns out that its influence on the mean velocity field is minimal, mainly because

the walls of the experimental model are rather smooth, and the Reynolds number very high. For

this reason, the turbulent stresses play a more important role in the flow field than the bed shear

stress. The turbulence production due to bed friction is also low compared to the horizontal shear

production. A sensibility analysis of the results to the bed friction coefficient has been done using

the Manning’s formula. No significant differences were found for values of the Manning’s coeffi-

cient in the range n = 0− 0.03s/m1/3, which cover widely the possible values in the experimental

model.

8.5.3 Boundary conditions

For all the discharges studied the flow is subcritical at the open boundaries. At the inlet boundary

the total water discharge was distributed over a uniform unit discharge profile perpendicular to the

boundary, while the water depth was computed by the numerical scheme. Three discharges were

used in the simulations: 35l/s, 65l/s and 105l/s. At the outlet boundary the free surface elevation

was fixed for each discharge in order to obtain approximately the same water depth at the middle

section of all the pools. This is the same procedure by which the downstream boundary condition

was fixed in the experimental model. It should be mentioned that the numerical velocity field is

quite insensitive to small changes in the downstream boundary condition. The sensitivity of the

water depth field is somewhat higher but still low.

When using the k − ε and the algebraic stress models the turbulent kinetic energy and the

dissipation must be imposed at the inlet boundary. The actual value of these two variables at the
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boundary is difficult to estimate. A too high turbulence level is not desirable since it would take

too much time to dissipate, and therefore, it would affect strongly the results in the downstream

pools. It is more adequate to let the flow produce the real state of turbulence as it passes through

the first pool. In all the simulations the turbulent variables were fixed at the inlet boundary to

kin = 10−2m2/s2 and εin = 10−2m2/s3, which gives an eddy viscosity of approximately νt,in ≈
10−3m2/s.

Wall functions were used at the solid boundaries. Due to the different local flow conditions,

the wall mesh size varies widely with the location inside the pool, but it was kept always below an

upper limit of y+ < 100.

8.5.4 Mesh convergence

In order to perform the numerical simulations, the whole experimental model (Figure 8.2) was split

in 2 sections. Each section contains an inlet pool, three active pools with either a T2 design (first

section) or a T1 design (second section), and an outlet pool (Figure 8.16). The first active pool has

a transition role, allowing the turbulent kinetic energy and velocity fields to develop. The second

pool has been used in order to compare the numerical and experimental flow fields. In all the cases

it has been checked that there are no significant differences between the flow fields in the second

and third pools (Figure 8.17). Hence, a uniform state of the flow in pools 2 and 3 can be assumed.

(a) Section 1. Design T2.

(b) Section 2. Design T1.

Figure 8.16: Numerical domain for the fishway. First and second sections.
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(a) Depth averaged speed (m/s). Design T1.

(b) Turbulent kinetic energy (m2/s2). Design T2.

Figure 8.17: Depth averaged speed and turbulent kinetic energy fields. Q=65l/s. k − ε model.

In order to obtain a mesh independent solution, three meshes with different spatial resolution

have been used for each pool design, which will be addressed as T1m0, T1m1, T1m2, for design

T1, and T2m0, T2m1, T2m2, for design T2 (Tables 8.7 and 8.8). Figure 8.18 shows the resolution

of the meshes T1m1 and T2m1, which are the ones chosen to perform the definitive computations.

It should be remembered that the finite volume mesh is built from the triangular mesh by the

procedure presented in section 3.5.1.

Triangular mesh Finite volume mesh

vertex elements volumes faces

T1m0 1462 2545 4006 7635

T1m1 5610 10334 15943 31002

T1m2 8932 16926 25857 50778

Table 8.7: Characteristics of the numerical meshes for the pool design T1.

Triangular mesh Finite volume mesh

vertex elements volumes faces

T2m0 3588 6692 10279 20076

T2m1 6182 11716 17897 35148

T2m2 8692 16610 25301 49830

Table 8.8: Characteristics of the numerical meshes for the pool design T2.
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(a) Mesh T2m1. (b) Mesh T1m1.

Figure 8.18: Numerical meshes for the fishway. Designs T1 and T2.

(a) Section 1. Design T2. ML model. (b) Section 2. Design T1. k − ε model.

Figure 8.19: Mesh convergence. Longitudinal velocity Vx(m/s) profile at the cross section x = 0.4m.

Q=65l/s.

The mesh convergence analysis was done for the discharge of 65l/s, with the mixing length

and the k − ε models. No significant differences were found in the results obtained with the

intermediate (T1m1, T2m1) and the finest meshes (T1m2, T2m2), as it is shown in Figure 8.19.

All the results presented in this chapter have been obtained with the meshes T1m1 and T2m1.

8.5.5 Influence of the numerical scheme on the solution

Figure 8.20 shows the velocity and water depth fields obtained with several numerical schemes

on the mesh T1m1, for the discharge of 65l/s, with the mixing length turbulence model. All the

schemes use an upwind discretisation of the bed slope term. In the following plots, the hybrid

first/second order scheme (see section 3.5.7), which uses a first order discretisation of the water

depth and a second order discretisation of the unit discharges, is addressed as order 122. The fully

second order scheme, which includes the high order correction of the upwind bed slope proposed
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(a) Vx(m/s). van Leer order 1. (b) h(m). van Leer order 1.

(c) Vx(m/s). van Leer order 122. (d) h(m). van Leer order 122.

(e) Vx(m/s). Roe order 2. (f) h(m). Roe order 2.

Figure 8.20: Influence of the numerical scheme on the velocity and water depth fields. Design T1. Q=65l/s.

ML model.

by Hubbard and García-Navarro [62], is addressed as order 2.

The first order scheme is too diffusive, and it is not able to reproduce the upper recirculation

eddy (Figures 8.20(a) and 8.22(a)). The excessive diffusion is due to the numerical scheme, since

the eddy viscosity fields obtained with all the schemes are similar (Figure 8.21). No significant

differences in the velocity field, neither in the water depth field, appear in the results obtained

with the hybrid first/second order scheme and with the fully second order scheme. This shows the
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importance of using a second order discretisation of the unit discharges, which removes most of the

first order scheme’s numerical diffusion. The results given by the van Leer’s and Roe’s schemes

do not show any significant difference.

The water depth fields obtained with the first and second order schemes show some differences

downstream the inlet slot, where the second order schemes produce a stronger depression in the

water surface elevation (Figures 8.20(b,d,f)).

(a) Eddy viscosity νt(m2/s). van Leer order 1. (b) Eddy viscosity νt(m2/s). van Leer order 122.

Figure 8.21: Influence of the numerical scheme on the eddy viscosity field. Design T1. Q=65l/s. ML

model.

(a) Longitudinal velocity Vx(m/s) at x = 0.4m. (b) Water depth h(m) at y = 0.16m.

Figure 8.22: Influence of the numerical scheme on the velocity and water depth. Design T1. Q=65l/s. ML

model.
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8.5.6 Unsteady solutions

Most of the simulations have converged to a steady solution, which is the expected behaviour in

RANS computations. However, in some cases the numerical solution shows periodical oscillations,

specially when the ASM is used. Unsteady solutions have been found in the design T2 for the

discharges of 35l/s and 65l/s with the ASM, and in the design T1 for the discharge of 35l/s with

both the ASM and the k − ε models (Figure 8.23). The magnitude of the oscillations is larger for

the 35l/s discharge. In all those cases an unsteady computation with a constant time step has been

done, in the same way as it is done in URANS simulations. Figure 8.23 shows the time evolution

of the longitudinal velocity at the spatial points defined in Figure 8.4 for the discharge of 35l/s.

The strongest oscillations occur at the points P5 and P4, followed by the points P3, P2 and P1.

(a) Design T2. (b) Design T1.

Figure 8.23: Time evolution of the longitudinal velocity Vx(m/s) at the points defined in Table 8.2 and in

Figure 8.4. Designs T1 and T2. Q=35l/s. ASM.

The physical interpretation of these unsteady solutions is not clear. They occur because the

flow has strong separation regions which enhance the growth of instabilities. When the turbulence

energy produced by the turbulence model is not large enough to damp these instabilities, the so-

lution shows a periodical oscillation. Numerically, these oscillations might be interpreted as the

unsteady solutions found in URANS computations. However, their physical interpretation should

not be done in a URANS basis for several reasons. First, because it is not obvious the physical

meaning of URANS oscillations obtained from the depth averaged shallow water equations, spe-

cially considering that the water depth in the fishway is of the same order of magnitude as the pool

length. Second, because the turbulence in the fishway is strongly three-dimensional, and there-

fore, the intrinsic physics of the oscillations should be simulated with a 3D model. A URANS

interpretation would be reasonable if the water depth was much smaller than the amplitude of the

oscillations, which is not the case in the present simulations.
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It is more likely to have unsteady solutions with the ASM than with the k − ε model because

the latter one overpredicts systematically the turbulent energy in the presence of stagnation points

and recirculation regions. Why the unsteady oscillations are stronger as the water depth diminishes

is not so clear. It may have to do with the fact that the Froude number increases as the water depth

diminishes, reaching values larger that 1 in the slot region for the discharge of 35l/s (Figure 8.24).

The change in the flow conditions from subcritical to supercritical, and again to subcritical in

approximately 15cm, probably enhances the growth of instabilities in the flow. All the results

relative to the unsteady simulations have been time averaged in order to obtain a steady flow

field. For the reasons exposed above, no additional interpretation has been done of the unsteady

oscillations.

(a) Design T2. (b) Design T1.

Figure 8.24: Froude number field. Designs T1 and T2. Q=35l/s. ASM.

Figure 8.25 shows a one cycle time sequence of the ASM unsteady solution for the design T1

with a discharge of 65l/s. It clearly shows a movement of the main jet, as well as variations in the

velocity peak value.

8.6 Numerical results and experimental validation

8.6.1 Results in Section 1 - Design T2

All the results presented in this section have been obtained with the numerical mesh T2m1 (Fig-

ures 8.16(a) and 8.18(a)), whose characteristics are presented in Table 8.8. For the discharges of

35l/s and 65l/s, the ASM results have been obtained as a time average of the unsteady numerical

solution.

All the flow field plots shown in this section are referred to the system of reference used in

Figure 8.16(a). All the cross section plots are referred to the system of reference defined in Fig-

ure 8.4(b). The only difference between both systems of reference is an offset of 1.74m in the

origin of the x - axis.
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Figure 8.25: Six snapshots of the longitudinal velocity Vx(m/s) over one unsteady oscillation. Design T2.

Q=65l/s. ASM.

Velocity field in the design T2

The dependence of the velocity field on the total discharge is shown in Figure 8.26. Both the

k − ε model and the ASM predict recirculation regions which are rather insensitive to the total

discharge, which is in direct agreement with the experimental results. The maximum velocity

given by the k − ε model is almost independent of the total discharge. On the other hand, the

maximum velocity in the slot given by the ASM increases when the discharge is increased from

35l/s to 65l/s. The velocity field obtained with the mixing length model (ML) is slightly more

sensitive to the total discharge. This is because the turbulent length scale used to compute the eddy

viscosity with the ML model depends directly on the water depth (Equation 2.69). Therefore, the

turbulent stresses (diffusive forces) increase with the water depth, and the velocity profiles become

more flattened. This is not the case in the ASM and k− ε models, where the turbulent length scale

is given by the turbulent kinetic energy and the dissipation. The dependence of the eddy viscosity

on the total discharge is shown in Figure 8.27. While the ML model almost triplicates the value

of the eddy viscosity when increasing the discharge from 35l/s to 105l/s, the eddy viscosity field

obtained with the k − ε model is very insensitive to the total discharge. Figures 8.26(a-c) and

8.27(a,b) show that similar velocity fields are obtained with different eddy viscosity fields, which

is a characteristic feature of RANS models.

A comparison of the depth averaged longitudinal velocity at several cross sections reveals a

satisfactory agreement between the experimental and numerical results (Figure 8.28). The exper-

imental velocity in Figure 8.28 has been computed as a weight average of the velocity at several

elevations (2 elevations for Q=35l/s, 3 elevations for Q=65l/s and 5 elevations for Q=105l/s).

The ASM and k − ε models predict fairly well the width of the recirculation eddies, as well as
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(a) ML model. Q=35l/s. (b) ML model. Q=65l/s. (c) ML model. Q=105l/s.

(d) k − ε model. Q=35l/s. (e) k − ε model. Q=65l/s. (f) k − ε model. Q=105l/s.

(g) ASM. Q=35l/s. (h) ASM. Q=65l/s. (i) ASM. Q=105l/s.

Figure 8.26: Depth averaged longitudinal velocity fields Vx(m/s). Design T2. Several discharges. Several

turbulence models. The black region represents negative longitudinal velocities.

the evolution of the jet as the flow crosses the pool. Although both models give slightly different

results, none of them can be considered in better agreement with the experimental data. The pre-

dictions of the ML model are somewhat worse, specially as the discharge increases. The width of

the upper recirculation region is still in good agreement with the experiments, but the size of the

lower eddy is underpredicted. The velocity profiles are too flattened, specially for the discharges

of 65l/s and 105l/s.

For the discharge of 35l/s the ML and k − ε models give a very similar definition of the main

jet. On the other hand, the ASM gives a slightly different position of the jet centreline, and a

somewhat smaller peak velocity (Figures 8.28(a-c)). The best agreement with the experimental

data for this discharge is given by the k − ε and ML models. For the 65l/s and 105l/s discharges,

the ASM and k − ε models give better predictions than the ML model.
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(a) ML model. Q=35l/s. (b) ML model. Q=105l/s.

(c) k − ε model. Q=35l/s. (d) k − ε model. Q=105l/s.

Figure 8.27: Dependence of the eddy viscosity νt(m2/s) on the total discharge. Design T2.

Water depth field in the design T2

The ASM and k − ε models predict similar water depths in all the pool except in the depression

area which appears downstream the inlet slot, where the k − ε model gives a lower water depth

(Figure 8.29). Since there are not many experimental data points in that area, it is difficult to

assess from Figure 8.29 which model is in better agreement with the experimental results. The ML

model gives slightly worse results, specially near the downstream baffle, where it predicts a too

large water depth.

Figure 8.30 shows several longitudinal sections of the water depth. The best agreement with the

experimental data is usually given by the ASM and k − ε models, except for the 35l/s discharge,

where the ASM results are somewhat poorer. Figure 8.31(a) shows the relation between the total

discharge and the water depth in the middle of the pool (x = 0.6m, y = 0.5m). For the considered

range of discharges the model gives an almost linear relation, which is in complete agreement with

the experiments.
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(a) Q=35l/s. x = 0.26m. (b) Q=35l/s. x = 0.46m. (c) Q=35l/s. x = 0.86m.

(d) Q=65l/s. x = 0.26m. (e) Q=65l/s. x = 0.46m. (f) Q=65l/s. x = 0.86m.

(g) Q=105l/s. x = 0.26m. (h) Q=105l/s. x = 0.46m. (i) Q=105l/s. x = 0.86m.

Figure 8.28: Numerical and experimental depth averaged longitudinal velocity Vx(m/s) at several cross

sections. Design T2.

Turbulence field in the design T2

As it has been pointed out by many researchers [46, 30, 110], the turbulence field is extremely

important in the performance of any fishway design, since it has a big influence on the swimming

costs of fishes. The fact of obtaining rather accurate velocity fields does not necessarily imply

that the turbulence field has been correctly computed. The turbulent kinetic energy and Reynolds

stresses given by RANS models are usually less accurate than the mean velocity results, specially
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(a) Experimental results. (b) ML model.

(c) k − ε model. (d) ASM model.

Figure 8.29: Water depth field h(m). Design T2. Q=65l/s.

(a) y = 0.74m. (b) y = 0.44m. (c) y = 0.14m.

Figure 8.30: Numerical and experimental water depth at several longitudinal sections.

Q=35l/s, 65l/s, 105l/s. Design T2.

in anisotropic recirculating flows. In the following plots the Reynolds stresses given by the k − ε

model have been computed with the Boussinesq assumption, using the eddy viscosity, the turbulent

kinetic energy and the mean velocity given by the model. The ML model does not compute the

turbulent kinetic energy, and therefore, it is not considered in this section.

224



CHAPTER 8. TURBULENT FLOW IN A VERTICAL SLOT FISHWAY

(a) Design T2. (b) Design T1.

Figure 8.31: Discharge-water depth relations. h0: water depth at the middle of the pool.

The global agreement between the experimental and numerical results is rather satisfactory,

specially considering the flow pattern in the pool. The ASM systematically predicts lower turbu-

lence levels than the k − ε model. The largest differences between both models occur in the main

jet stream, where the ASM underpredicts the turbulent energy, while the k − ε model overpredicts

it (Figure 8.32). Near the outlet slot both models overpredict the turbulent energy (Figure 8.32(c)).

The excessively large turbulence levels given by the k − ε model just downstream the inlet slot

(Figures 8.32(a) and 8.34(a)) are caused by the strong shear strain, with velocity gradients of the

order of 20s−1. The flow conditions in that region, with a very strong swirl as well as separation

and reattachment in a very short distance, are beyond the capabilities of the eddy viscosity models.

The largest source of turbulence in the pool is due to the strong shear strain in the inlet slot

and in the lower eddy (Figure 8.33). Although in the k − ε model the turbulence production near

stagnation points is controlled by the production limiter (Equation 2.88) and by the realizability

condition (Equation 2.93), the ASM still gives lower values of the turbulent kinetic energy in the

slot region and in the lower recirculation eddy (Figure 8.34). On the other hand, the production

levels given by the ASM extend further downstream (Figure 8.33), which is clearly shown in the

turbulent kinetic energy fields (Figure 8.34). The peak value of the turbulent energy given by the

k − ε model is inside the lower eddy, with values around 0.24m2/s2. With the ASM the peak

values are lowered to 0.18m2/s2 and moved downstream.

The anisotropy between the longitudinal and transverse Reynolds stresses downstream the inlet

slot is well predicted by the ASM model (Figure 8.35(a,b)). While the longitudinal component

(u′2) is slightly underpredicted, probably due to the effects of the air bubbles and of the 3D flow

features in the slot region, which are not considered in the model, the transverse component (v ′2)

is rather accurately computed. On the other hand, the k − ε model overpredicts both components

in this region, specially the transverse one (v′2). Near the outlet slot both models give poorer
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(a) x = 0.26m. (b) x = 0.46m. (c) x = 0.86m.

Figure 8.32: Numerical and experimental turbulent kinetic energy k(m2/s2) at several cross sections. De-

sign T2. Q=65l/s.

(a) k − ε model. (b) ASM.

Figure 8.33: Production of turbulent kinetic energy due to horizontal strain hPk(m3/s3). ASM and k − ε
models. Design T2. Q=65l/s.

predictions. It seems that the production of turbulence given by both models in the reattachment

region (x ≈ 2.3m in Figure 8.33) is excessively high.

8.6.2 Results in Section 2 - Design T1

All the results relative to the design T1 have been obtained with the numerical mesh T1m1 (Fig-

ures 8.16(b) and 8.18(b)), whose characteristics are defined in Table 8.7. Unsteady solutions have

been obtained only for the 35l/s discharge, with both the ASM and the k − ε models. In those

cases a time average of the numerical solution has been computed in order to compare with the

experimental results.

All the flow field plots shown in this section are referred to the system of reference defined

in Figure 8.16(b). All the cross section plots are referred to the system of reference defined in

Figure 8.4(a). The only difference between both systems of reference is an offset of 9.0m in the

origin of the x - axis.
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(a) k − ε model. (b) ASM.

Figure 8.34: Turbulent kinetic energy field k(m2/s2). ASM and k − ε models. Design T2. Q=65l/s.

(a) Q=65l/s. x = 0.26m. (b) Q=65l/s. x = 0.46m. (c) Q=65l/s. x = 0.86m.

Figure 8.35: Numerical and experimental horizontal Reynolds stresses u′2 and v′2(m2/s2) at several cross

sections. Design T2. Q=65l/s.

Velocity field in the design T1

The flow pattern in the pool design T1 is also rather independent of the total discharge. The main

differences between the velocity fields in the designs T1 and T2 are the size of the lower recircu-

lation eddy and the curvature of the main jet. Figure 8.36 shows the longitudinal velocity fields

obtained with the 3 turbulence models for the 3 flow discharges used in the numerical computa-

tions. The ML model results are very dependent on the total discharge, and fail to predict the size

of the recirculation eddies. This is specially true for the discharge of 105l/s, where the upper recir-

culation region completely disappears. Both the upper and lower recirculation eddies given by the

ASM and k − ε models are almost independent of the total discharge, which is in good agreement

with the experiments. The size of both eddies is similarly predicted by both models. The maximum

velocity in the slot increases slightly from the 35l/s discharge to the 65l/s discharge, and then it

remains almost constant up to the 105l/s discharge. The ASM gives slightly higher velocities than

the k − ε model in the slot region.
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(a) ML model. Q=35l/s. (b) ML model. Q=65l/s. (c) ML model. Q=105l/s.

(d) k − ε model. Q=35l/s. (e) k − ε model. Q=65l/s. (f) k − ε model. Q=105l/s.

(g) ASM. Q=35l/s. (h) ASM. Q=65l/s. (i) ASM. Q=105l/s.

Figure 8.36: Depth averaged longitudinal velocity fields Vx(m/s). Design T1. Several discharges. Several

turbulence models. The black region represents negative longitudinal velocities.

The comparison of the numerical and experimental depth averaged longitudinal velocity at

several cross sections (Figure 8.37) shows a good agreement when using the ASM and k − ε

models. As it occurs in the pool design T2, both the ASM and k − ε models give somewhat

different results, but a similar level of agreement with the experimental data. The models give a

good definition of both the upper and lower eddies. The excessive turbulent diffusion produced by

the ML model is clearly shown in the flattened velocity profiles obtained for the 105l/s discharge

(Figures 8.37(g-i)).

Water depth field in the design T1

The agreement between the numerical and experimental water depth in the pool design T1 is

rather good for the 65l/s and 105l/s discharges. For the discharge of 35l/s the numerical model

overpredicts the water depth in all the pool (Figure 8.38). Both the ML and k − ε models give

similar water depths in this design, still the k−ε model agrees slightly better with the experimental

data for the discharge of 105l/s. The ASM predicts slightly larger water depths, specially for the
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(a) Q=35l/s. x = 0.16m. (b) Q=35l/s. x = 0.46m. (c) Q=35l/s. x = 0.86m.

(d) Q=65l/s. x = 0.16m. (e) Q=65l/s. x = 0.46m. (f) Q=65l/s. x = 0.86m.

(g) Q=105l/s. x = 0.16m. (h) Q=105l/s. x = 0.46m. (i) Q=105l/s. x = 0.86m.

Figure 8.37: Numerical and experimental depth averaged longitudinal velocity Vx(m/s) at several cross

sections. Design T1.

discharge of 35l/s.

Turbulence field in the design T1

The ASM gives better predictions of the turbulence field than the k − ε model, specially regard-

ing the Reynolds stresses. As is happens in the pool design T2, the turbulent kinetic energy peak

near the inlet slot is underpredicted by the ASM, while overpredicted by the k − ε model (Fig-
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(a) y = 0.76m. (b) y = 0.46m. (c) y = 0.16m.

Figure 8.38: Numerical and experimental water depth at several longitudinal sections.

Q=35l/s, 65l/s, 105l/s. Design T1.

(a) Q=65l/s. x = 0.16m. (b) Q=65l/s. x = 0.46m. (c) Q=65l/s. x = 0.86m.

Figure 8.39: Numerical and experimental turbulent kinetic energy k(m2/s2) at several cross sections. De-

sign T1. Q=65l/s.

ure 8.39(a,b)). Near the outlet slot the ASM is in very good agreement with the experiments

(Figure 8.39(c)).

As it could be expected, the k − ε model fails to predict the anisotropy between the two hori-

zontal Reynolds stresses, and gives excessively large values of the transverse component v ′2 (Fig-

ure 8.40). On the other hand, the agreement between the ASM predictions of v ′2 and the exper-

imental data is remarkable. It should be noticed that near the inlet slot the experimental peak in

the longitudinal normal stress (u′2) is underpredicted by the ASM, while the transverse stress (v ′2)

is in much better agreement with the experimental data. This feature was also found in the de-

sign T2, and, as it has been argued, it might be explained to certain degree by the large amount of

air bubbles which are present in this region of the pool, and by the 3D flow features in the slot.

In the upper part of the pool, which is a quiet area with a relatively low turbulence level, both

models give similar results, in good agreement with the experimental data. In the lower part of the

pool, where the maximum velocity and largest turbulence levels occur, the ASM performs better.
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(a) Q=65l/s. x = 0.16m. (b) Q=65l/s. x = 0.46m. (c) Q=65l/s. x = 0.86m.

Figure 8.40: Numerical and experimental horizontal Reynolds stresses u′2 and v′2(m2/s2) at several cross

sections. Design T1. Q=65l/s.

8.7 Concluding remarks

The numerical and experimental results presented in this chapter suggest that the depth averaged

shallow water equations, with a suitable turbulence model, might be used in order to compute the

free surface flow in vertical slot fishways. Although there are several regions in the flow where

the modelling assumptions are broken, specially near the slot region, the numerical results show

a satisfactory global agreement with the experiments. The size of the recirculation regions is

well predicted, and the velocity fields are fairly independent of the water discharge, which is a

characteristic feature of vertical slot fishways [30]. The velocity field is more accurately computed

than the turbulent kinetic energy field, as it usually occurs in RANS modelling.

The numerical results can be considered as a useful complementary tool for fishway design

purposes. Nevertheless, depending on the specific pool design and on the flow conditions, the

equations of the model might be in their limit of application. Therefore, special care should be

taken when analysing the numerical results. In more complex pool designs, and for bed slopes

larger than 10%, the numerical predictions are expected to deteriorate rapidly. On the other hand,

it should be said that a slope of 10% is in the upper limit of the most frequently used slopes in

vertical slot fishways [30, 76].

According to the numerical results, the bed friction does not have any influence on the mean

flow, nor on the turbulent energy field. The bed shear stress in the mean flow equations is negli-

gible when compared to the bed slope and turbulent diffusion. In the same way, the production of

turbulent kinetic energy due to bed friction is several orders of magnitude smaller than the produc-

tion due to horizontal shear strain. For this reason, in the fishway flow the depth averaged ASM

and k − ε models become the respective original 2D models.

The importance of a correct turbulence modelling follows directly from the numerical and

experimental results. The large values of the turbulent kinetic energy give it a very important role
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in the mean flow equations. Although the ASM gives slightly better predictions of the turbulent

kinetic energy, the level of agreement with the experiments is generally similar for the ASM and

k − ε models. However, the Reynolds stresses are better predicted by the ASM. The accuracy of

the results is as expected when applying a RANS turbulence model to a strong recirculating flow.

A significant improvement in the results may only be achieved by a 3D simulation rather than a

more complex depth averaged turbulence model.

The influence on the mean flow of the large amount of air bubbles present in the slot region has

not been directly checked, but it is probably responsible for some of the differences between the

numerical and experimental results near the inlet slot.
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As a result of this work, a finite volume solver for the unsteady depth averaged shallow water equa-

tions (2D-SWE) coupled with several RANS turbulence models has been developed and applied

to several free surface flows. Special attention has been placed in the modelling of turbulent flows

and in the treatment of wet-dry fronts. In all the cases the numerical results have been compared

with experimental data, obtaining satisfactory results.

Three depth averaged turbulence models have been used in the applications: a mixing length

model (ML), a k − ε model, and an algebraic stress model (ASM). The depth averaged mixing

length and k − ε models are commonly used in the simulation of turbulent shallow flows. Addi-

tional limiters to the production of turbulence proposed by Menter [88] and Durbin [45] have been

introduced in the original models in order to control the excessively large turbulence production

given by eddy viscosity models in stagnation regions. The depth averaged algebraic stress model

has been proposed in this work as an extension of the 2D algebraic stress model, with additional

source terms which account for the production of Reynolds stresses due to vertical shear. The

computational cost and numerical stability of the proposed ASM are similar to those of the k − ε

model.

The numerical solver includes the first order upwind schemes of Roe and van Leer, as well as

their second order extension. In all the numerical simulations the importance of using a second

order upwind spatial discretisation has been checked. A first order scheme may give rather good

predictions of the water depth, but it introduces too much numerical diffusion, and therefore, it

excessively smooths the velocity profiles. This is specially important when comparing different

turbulence models, since the numerical diffusion introduced by a first order upwind scheme may

be of the same order of magnitude as the turbulent diffusion. In order to avoid spurious oscillations

when the bathimetry is irregular, an upwind discretisation of the bed slope term is used in the

solver, with second order corrections proposed by Hubbard and García-Navarro [62]. In this way

a fully second order upwind scheme free of spurious oscillations is obtained.

Alternatively to the fully second order scheme, a rather simple, free of spurious oscillations and

stable scheme, which reduces the numerical diffusion in a significant way, has been proposed in

this work, by just using a second order discretisation for the two unit discharge components, whilst

keeping a first order discretisation for the water depth and bed elevation. The resulting hybrid
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scheme has been used in the practical applications, giving accurate and stable results. Nevertheless,

it is important to remark that the water depth gradient in all the applications was quite smooth.

In other flow conditions with very steep water depth gradients, a fully second order scheme is

expected to produce more accurate results than the hybrid scheme.

The treatment of wet-dry fronts proposed in section 3.9 is based on the ideas of Brufau et

al. [19], with a slight modification in the reflection condition. It has been tested with satisfactory

results in the simulation of long shallow waves generated by bed movements (chapter 5), and tidal

waves in coastal regions (chapter 6). The wet-dry condition used in the solver is numerically

stable, even with a very irregular bathimetry, and it does not generate spurious oscillations which

could contaminate the numerical results. In chapter 6 it has been used to model the flooding

and drying of tidal flats in the Crouch estuary, without producing any significant instability in

the numerical results. In addition, the wet-dry treatment is not diffusive, even in the presence of

discontinuities in the bed elevation. For this reason it can be used to model overtopping vertical

walls inside the numerical domain, by just introducing a discontinuity in the bed elevation (chapter

5). However, in such a case it should be considered that the shallow water equations neglect the

vertical accelerations, and assume an hydrostatic pressure distribution, which is not physically

correct when modelling the runup of waves in very steep walls. For this reason, even though

the wet-dry condition works well in the sense that it is numerically stable and it does not diffuse

the wave until it overtops the wall, the runup on vertical walls is underestimated and the high

frequency water level oscillations, which are caused by the vertical accelerations near the wall, are

not resolved by the model. A possible line of future work to improve the runup predictions using

the 2D-SWE is to include an additional term in the momentum equations in order to account for

the non-hydrostatic pressure distribution when the vertical accelerations are important.

The 1D-SWE have been applied in chapter 5 to model the generation of long waves by the

horizontal movement of a slanted paddle. The generation of the wave is achieved numerically

by a moving bed. At the same time the wet-dry condition participates in the generation process,

modelling the runup of the generated wave in the slanted paddle. The results are rather satisfactory,

but again, when the paddle slope is too large the vertical accelerations produce high frequency

oscillations which are not resolved by the model. These oscillations are small when the paddle

slope is 45o, and somewhat larger when the paddle slope is increased to 60o. A moving boundary

condition was used in order to compute the wave generated by a vertical paddle (90o). In this case,

the vertical accelerations are very important and the maximum wave height is underpredicted by

the model.

The numerical modelling of the Crouch estuary (chapter 6) showed that the turbulence model

does not have a big influence on the velocity and water depth fields, and its importance might be

reduced to local flow features. This is because the turbulence level in the estuary is low, and the

diffusive forces are smaller than the convective forces in the momentum equations. The results are
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somewhat more sensitive to the bed friction coefficient, but the dependence is still low. Both the

ASM and k − ε models give very similar turbulent kinetic energy fields. This is because the main

source of turbulence in the estuary is the bed friction, and both models account in a similar way for

this process. Nonetheless, some differences appear in the Reynolds stresses predicted by the ASM

and k− ε models. The comparison of the numerical predictions with experimental turbulence data

might be a useful future work in order to assess the models performance.

The numerical modelling of the flow in vertical slot fishways (chapter 8) was proposed as

a future line of research in previous works by various researchers (see for example [105]), and

was accomplished in this thesis. The comparison between the numerical and experimental results

showed that the depth averaged shallow water equations, coupled with a suitable turbulence model,

may be used in order to compute the free surface flow in vertical slot fishways. Although there

are several regions in the flow where the modelling assumptions are broken, specially near the slot

region, the numerical results show a satisfactory global agreement with the experiments. The most

important features of the flow field (maximum velocity in the pool, size of the recirculation regions,

turbulence level, dependence of the solution on the total discharge . . . ) are well predicted by the

solver. This is an interesting finding because from the nature of the fishway flow (3D turbulence,

water depth similar to the horizontal length scale, 3D mean flow features in the slot region, . . . ),

it seems that only a 3D model approach would give successful and accurate results. However, as

shown in chapter 8, a depth average model can give very satisfactory predictions with a relatively

low computational cost.

The importance of a correct turbulence modelling in the fishway was confirmed by the numer-

ical results. The ML model failed to predict the velocity field accurately, specially for large water

discharges, because the model assumes a turbulent length scale proportional to the water depth,

which is not correct in the fishway flow. The ASM and k − ε models give fairly accurate velocity

fields. The original purpose of using the algebraic stress model was to account for the effects of the

anisotropic Reynolds stresses in the flow. When compared to the k − ε model, which assumes an

isotropic eddy viscosity, the ASM improves the prediction of the turbulent stresses. On the other

hand, no improvement has been found in the water depth and velocity fields, which are predicted

with a similar degree of accuracy with either the ASM or the k − ε model. Probably the main

disagreements between the experimental and numerical results are due to the approximations as-

sumed in the depth averaged equations, and may only be improved by using a 3D model rather

than implementing more complex depth averaged turbulence models.

As it often happens in CFD, no conclusion can be drawn about which is the most suitable

turbulence model to be generally used. The ASM gives a better representation of the anisotropic

turbulence than the k − ε model, and both of them are much more complex and realistic than

the ML model. On the other hand, the computational cost and numerical instabilities increase

with the complexity of the model. Therefore, considering all these factors (accuracy, stability
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and computational cost), sometimes it might be worth using a simple turbulence model (or even

neglect the turbulent effects, as it has been done in the propagation of shallow waves in chapter 5).

Nevertheless, it should be remarked that even in those situations in which turbulence plays a little

role in the mean flow field, a more sophisticated model will always give more accurate predictions

of the turbulence field, which is very important in pollutant and sediment transport processes. In

other flows, as for example in vertical slot fishways, the turbulent effects are extremely important

in the momentum conservation equations, and a complex turbulence model is needed.
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